\(x_1,x_2\) là các nghiệm của phương trình \(x^2-ax+1=...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 12 2017

Lời giải:

Áp dụng hệ thức Viete suy ra với $x_1,x_2$ là hai nghiệm của phương trình thì:

\(\left\{\begin{matrix} x_1+x_2=a\\ x_1x_2=1\end{matrix}\right.\)

Ta có:

\(S=x_1^7+x_2^7=(x_1^3+x_2^3)(x_1^4+x_2^4)-x_1^3x_2^4-x_2^3x_1^4\)

\(=[(x_1+x_2)^3-3x_1x_2(x_1+x_2)][(x_1^2+x_2)^2-2x_1^2x_2^2]-x_1^3x_2^3(x_1+x_2)\)

\(=(a^3-3a)[((x_1+x_2)^2-2x_1x_2)^2-2]-a\)

\(=(a^3-3a)[(a^2-2)^2-2]-a\)

\(=a^7-7a^5+14a^3-7a\)

30 tháng 1 2016

+b2 - 4ac > 0

+x1 - x2 = 5 

+ x12 - x23 =5[(x1-x2)2 -3x1x2] =35 => 25 - 3 x1x2 =7 => - x1.x2 = -6

=> x1 ; - x2 là nghiệm của pt : X2 -5X - 6 =0 => X1 =-1 ; -X2 = 6 hoặc x1 = 6 ; -x2 =-1

+ x1 = -1 ; x2 =-6 => a = 7 ; b = 6

+ x1 =6 ; x2 = 1 => a =-7 ; b = 6

30 tháng 1 2016

sai đề bài rùi kìa phải là ax mà

13 tháng 5 2017

Theo hệ thức viet thì đáp án là câu d(đk là a khác 0)

1 tháng 6 2017

chọn câu d)

4 tháng 3 2022

????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

4 tháng 3 2022

?????

1 tháng 6 2020

Ta có: \(x^2-5x+3=0\)

Áp dụng định lí viet ta có: \(\hept{\begin{cases}x_1+x_2=5\\x_1x_2=3\end{cases}}\)

a) \(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=5^2-2.3=19\)

b) \(B=x_1^3+x_2^3=\left(x_1+x_2\right)^3-3\left(x_1+x_2\right)x_1x_2=5^3-3.5.3=80\)

c) \(C=\left|x_1-x_2\right|\)>0

=> \(C^2=x_1^2+x_2^2-2x_1x_2=19-2.3=13\)

=> C = căn 13

d) \(D=x_2+\frac{1}{x_1}+x_1+\frac{1}{x_2}=\left(x_1+x_2\right)+\frac{x_1+x_2}{x_1x_2}=5+\frac{5}{3}=5\frac{5}{3}\)

e) \(E=\frac{1}{x_1+3}+\frac{1}{x_2+3}=\frac{\left(x_1+x_2\right)+6}{x_1x_2+3\left(x_1+x_2\right)+9}=\frac{5+6}{3+3.5+9}=\frac{11}{27}\)

g) \(G=\frac{x_1-3}{x_1^2}+\frac{x_2-3}{x_2^2}=\left(\frac{1}{x_1}+\frac{1}{x_2}\right)-3\left(\frac{1}{x_1^2}+\frac{1}{x_2^2}\right)\)

\(=\frac{x_1+x_2}{x_1x_2}-3\frac{x_1^2+x_2^2}{x_1^2.x_2^2}=\frac{5}{3}-3.\frac{19}{3^2}=-\frac{14}{3}\)

4 tháng 5 2017

\(\Delta=\)(m+1)\(^2\)- 1.(m-4) =\(m^2+2m+1\)\(-m+4\)=m\(^2\)+m+5>0 với mọi m

Gọi \(x_1,x_2\)là nghiệm của phương trình (1)

theo hệ thức Vi-ét ta có \(x_1+x_2=2\left(m+1\right)\);\(x_1.x_2=\)m-4

B=\(x_1\left(1-x_2\right)+x_2\left(1-x_1\right)=x_1-x_1x_2+x_2-x_1x_2=2\left(m+1\right)-2.\left(m-4\right)=2m-2m+2+8=10\)

=> B không phụ thuộc vào m

4 tháng 5 2017

không có gì

11 tháng 6 2020

dcv_new 

dcv - new

Thay m = - 1 vào thì ta có: \(x^2-x-6=0\)

<=> x = 3 hoặc x = -2 

Vậy m = -1 và x2 = - 2

11 tháng 6 2020

a, Thay \(x_1=3\)vào phương trình , khi đó :

\(pt< =>\)\(3^2+3m+2m-4=0\)

\(< =>5m+5=0\)

\(< =>m=-\frac{5}{5}=-1\)

Thay \(m=-1\)vào phương trình , khi đó :

\(pt< =>x^2-x+2=0\)

\(< =>x=\varnothing\left(vo-nghiem\right)\)(giải delta)

Vậy phương trình chỉ có nghiệm kép khi \(m=-1\)

b, Theo hệ thức vi ét ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-m\\x_1x_2=\frac{c}{a}=2m-4\end{cases}}\)

Khi đó \(A=\frac{2m-4+3}{-m}=\frac{2m-1}{-m}\)

Bạn thiếu đề rồi thì phải !

4 tháng 6 2020

bạn ơi phương trình đã ở dạng tích và tổng rồi nên bạn không cần biến đổi phức tạp ạ

4 tháng 6 2020

hình như có j đó sai sai.

1-4-4m đáng nhẽ phải -3-4m chứ