Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1 sai đề bạn ạ
câu 2: a đồng dư 4 mod 4. ta có a2 đồng dư 16 hay đồng dư 5 mod 11
1.Đề sai
2. Vì a chia 11 dư 4 nên a = 11k + 4 với k thuộc N
Ta có : \(a^2=\left(11k+4\right)^2=\left(11k\right)^2+2.11k.4+11+5=11\left(11k^2+8k+1\right)+5=11Q+5\)
Do đó \(a^2\) chia 11 dư 5
a : 7 dư 3 cm a2 : 7 dư 2
Ta có: a = 7k + 3
⇔ a2 = (7k + 3)2
⇔ a2 = 49k2 + 42k + 9
⇔ a2 = 7.(7k2 + 6k + 1) + 2
7 ⋮ 7 ⇔ 7.(7k2 + 6k + 1) ⋮ 7
⇔ a2 = 7.(7k2 + 6k + 1) + 2 : 7 dư 2 (đpcm)
Cách 2 sử dụng đồng dư thức:
a \(\equiv\) 3 (mod 7) ⇔ a2 \(\equiv\) 32 (mod 7) 32 : 7 dư 2 ⇔ a2 : 7 dư 2 (đpcm)
a, Gọi b là số thương của phép chia a cho 3 dư 2 => a=3b+2
\(a^2=\left(3b+2\right)^2=9b^2+12b+4=3\left(3b^2+4b+1\right)+1\\ Mà:3\left(3b^2+4b+1\right)⋮3\\ Vậy:3\left(b^2+4b+1\right)+1:3\left(dư.1\right)\\ Vậy:a^2:3\left(dư.1\right)\left(đpcm\right)\)
b, Gọi c là số thương của phép chia cho 5 dư 3 => a=5b+3
\(a^2=\left(5b+3\right)^2=25b^2+30b+9=5\left(5b^2+6b+1\right)+4\\ Mà:5\left(5b^2+6b+1\right)⋮5\\ Nên:5\left(5b^2+6b+1\right)+4:5\left(dư.4\right)\\ Vậy:a^2:5\left(dư.4\right)\left(đpcm\right)\)
a) Số a có dạng: \(a=3k+2\)
\(\Rightarrow a^2=\left(3k+2\right)^2=\left(3k\right)^2+2\cdot3k\cdot2+2^2=9k^2+12k+4\)
\(\Rightarrow a^2=9k^2+12k+3+1=3\left(3k^2+4k+1\right)+1\)
Mà: \(3\left(3k^2+4k+1\right)\) ⋮ 3
\(\Rightarrow a^2=3\left(3k^2+4k+1\right)+1\) chia 3 dư 1
b) Số a có dạng là: \(a=5k+3\)
\(\Rightarrow a^2=\left(5k+3\right)^2=25k^2+2\cdot5k\cdot3+3^2=25k^2+30k+9\)
\(\Rightarrow a^2=\left(25k^2+30k+5\right)+4=5\left(5k^2+6k+1\right)+4\)
Mà: \(5\left(5k^2+6k+1\right)\) ⋮ 5
\(\Rightarrow a^2=5\left(5k^2+6k+1\right)+4\) chia 5 dư 4
Ta có x chia 7 dư 6.Đặt x=7k+6
Khi đó:\(x^2=\left(7k+6\right)^2=49k^2+84k+36=7\left(7k^2+12k+5\right)+1\)
Vậy x2 chia 7 dư 1(đccm)
a chia 7 dư 3 nên a = 7k + 3 \(\left(k\in N\right)\)
Ta có: \(a^2=\left(7k+3\right)^2=49k+42k+9=7\left(7k+6+1\right)+2\)
Vậy \(a^2\)chia 7 dư 2
ta có a:7 dư 3
suy ra a^2:7 dư 3 nhân 3
mà 3.3 =9. 9 chia 7 dư 2
vậy a^2 chia 7 dư 2
Ta có : x chia cho 2 dư 1
x chia cho 3 dư 2
x chia cho 4 dư 3
x chia cho 5 dư 4 \(\Rightarrow\)x+1 chia hết cho 2;3;4;5;6;7;8;9\(\Rightarrow\)x +1 = BCNN(2;3;4;5;6;7;8;9) = 2520 \(\Rightarrow\)x=2519(nếu x nhỏ nhất)
x chia cho 6 dư 5
x chia cho 7 dư 6
x chia cho 8 dư 7
x chia cho 9 dư 8
Còn nếu x không nhỏ nhất thì nhân lần lượt với các số tự nhiên từ 0;1;2;3...
Gọi x là số cần tìm
x chia 2 dư 1 chia 3 dư 2 chia 4 dư 3 ... chia 9 dư 8
\(\Rightarrow x+1⋮2;3;4;5;6;7;8;9\)
x có dạng \(x+kBCNN\left(2;3;4;5;6;7;8;9\right);k\in N\)
\(2=2\)
\(3=3\)
\(4=2^2\)
\(5=5\)
\(6=2\cdot3\)
\(7=7\)
\(8=2^3\)
\(9=3^2\)
\(BCNN\left(2;3;4;5;6;7;8;9\right)=2^3\cdot3^2\cdot5\cdot7=2520\)
\(x+1=2520\)
\(x=2519\)
Vậy \(x=\left\{2519;2519+1\cdot2520;2519+2\cdot2520;...\right\}\)
\(x=\left\{2519;5039;7559;...\right\}\)
Ta có số a chia 7 dư 3 , tức là \(a=7k+3\left(k\in N\right)\)
\(\Rightarrow a^2=\left(7k+3\right)^2=\left(7k\right)^2+3^2+2.7.3k=7\left(7k^2+6k+1\right)+2=7Q+2\)
Vậy a2 chia 7 dư 2
ta có a:7 dư 3 nên a sẽ có dạng tổng quát là a=7k+3 \(\left(k\in N\right)\)
\(\Rightarrow\)a2=(7k+3)2=(7k)2+2.7k.3+7+2=7(7k2+6k+1)+2 ( có dạng B.Q+R)
vậy nên a2:7 dư 2