Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trần Thanh Phương, Nguyễn Ngọc Lộc , @Nguyễn Việt Lâm, @Akai Haruma, Phạm Thị Diệu Huyền, Phạm Lan Hương
Cần gấp lắm ạ!!! mn giúp e vs, thanks!
câu 2 sửa đề tí ạ: OO' cắt 2 đg tròn tại C,E,D,F sao cho...
a) Xét ΔAMB vuông tại M và ΔANC vuông tại N có
\(\widehat{NAC}\) chung
Do đó: ΔAMB∼ΔANC(g-g)
Suy ra: \(\dfrac{AM}{AN}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
Xét ΔAMN và ΔABC có
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)(cmt)
\(\widehat{NAM}\) chung
Do đó: ΔAMN\(\sim\)ΔABC(c-g-c)
Suy ra: \(\widehat{AMN}=\widehat{ABC}\)(hai góc tương ứng)
b) Gọi giao điểm của AH và BC là K
Xét ΔCHK vuông tại K và ΔCBN vuông tại N có
\(\widehat{HCK}\) chung
Do đó: ΔCHK∼ΔCBN(g-g)
Suy ra: \(\dfrac{CH}{CB}=\dfrac{CK}{CN}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(CH\cdot CN=CB\cdot CK\)
Xét ΔBHK vuông tại K và ΔBCM vuông tại M có
\(\widehat{HBK}\) chung
Do đó: ΔBHK∼ΔBCM(g-g)
Suy ra: \(\dfrac{BH}{BC}=\dfrac{BK}{BM}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(BH\cdot BM=BC\cdot BK\)
Ta có: \(BH\cdot BM+CH\cdot CN\)
\(=BC\cdot BK+BC\cdot CK\)
\(=BC^2=a^2\)(đpcm)
bạn tự vẽ hình nhé ^.^
từ B kẻ BH vuông góc với AC \(\Rightarrow SABC=\frac{1}{2}AC\cdot BH\)(1)
ap dung ti so luong giac trong tam giac ABH co \(BH=sinA\cdot AB\)
thay vao(1) ta co \(SABC=\frac{1}{2}AB\cdot AC\cdot sinA\left(DPCM\right)\)
*hinh tu ve*
Xét phép vị tự quay S có tâm B, góc quay (BM,BA) \(\left(mol\pi\right)\)và tỉ số \(k=\frac{BM}{BA}\)
Ta có S: \(M\rightarrow A,C\rightarrow H\in BN\)
Khi đó: (HN,HC) = (AB,AM) = ((AN,AC) \(\left(mol\pi\right)\)
Nên A,N,C, H đồng viên. Theo định lý Ptolemy ta có:
HB.AC=AC(BH+NH)=AC.BH+AN.CH+AH.CN
Lại theo tính chất của phép tự vị quay thì \(k=\frac{BA}{BM}=\frac{HC}{AM}=\frac{HA}{CM}=\frac{HB}{BC}\)
\(\Rightarrow HC=\frac{AM\cdot AB}{BM};BH=\frac{AB\cdot BC}{BM};HA=\frac{AB\cdot MC}{BM}\)
\(\Rightarrow\frac{AB\cdot BC}{BM}\cdot AC=AC\cdot BN+\frac{AM\cdot AB}{BM}\cdot AN+\frac{AB\cdot MC}{BM}\cdot CN\)
hay \(\frac{AM\cdot AN}{AB\cdot AC}+\frac{BM\cdot BN}{BC\cdot BA}+\frac{CM\cdot CN}{CA\cdot CB}=1\)