Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Gọi mẫu là x
Theo đề, ta có:
\(\dfrac{2}{5}< \dfrac{4}{x}< \dfrac{2}{3}\)
=>10>x>6
=>\(x\in\left\{9;8;7\right\}\)
b: Phần phân số là 1-9/25=16/25
Phần nguyên là 125x9/25=45
Vậy: Hỗn số cần tìm là \(45\dfrac{16}{25}\)
Ta thấy các số nguyên tố đều là số lẽ trừ 2
Với p là số lẽ =>\(p^2+1\text{ là số chẵn ; }p^4+1\text{ là số chẵn}\)
=>\(p^2+1;p^4+1\text{ không phải là số nguyên tố}\)
=>p không phải là số lẽ =>p=2
\(Q=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
\(=>Q=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)+\left(\frac{c}{a+b}+1\right)-3\)
\(=>Q=\left(\frac{a+b+c}{b+c}\right)+\left(\frac{a+b+c}{a+c}\right)+\left(\frac{a+b+c}{a+b}\right)-3\)
\(=>Q=\left(a+b+c\right).\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)-3\)
\(=>Q=259.15-3=3882\)
Vậy Q=3882
\(Q=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\frac{259-\left(b+c\right)}{b+c}+\frac{259-\left(a+c\right)}{a+c}+\frac{259-\left(a+b\right)}{a+b}\)
\(=259.\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)+\left[\frac{-\left(b+c\right)}{b+c}+\frac{-\left(a+c\right)}{a+c}+\frac{-\left(a+b\right)}{a+b}\right]\)
tới đây tự làm tiếp
Chọn A