Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Từ $f(1+3x)=2x-f(1-2x)$ thay $x=0$ suy ra $f(1)=1$
$f(1+3x)=2x-f(1-2x)$
$\Rightarrow f'(1+3x)=(2x)'-f'(1-2x)$
$\Leftrightarrow 3f'(1+3x)=2+2f'(1-2x)$. Thay $x=0$ suy ra $f'(1)=2$
PTTT của $f(x)$ tại điểm $x=1$ là:
$y=f'(1)(x-1)+f(1)=2(x-1)+1=2x-1$
\(f\left(3\right)=\dfrac{3}{2}\) ; \(f\left(\dfrac{3}{2}\right)=\dfrac{6}{5}\) ; \(f'\left(x\right)=\dfrac{1}{\left(x+1\right)^2}\Rightarrow f'\left(3\right)=\dfrac{1}{10}\) ; \(f'\left(\dfrac{3}{2}\right)=\dfrac{4}{25}\)
\(g\left(3\right)=f\left(f\left(3\right)\right)=f\left(\dfrac{3}{2}\right)=\dfrac{6}{5}\)
\(g'\left(x\right)=f'\left(f\left(x\right)\right).f'\left(x\right)\Rightarrow g'\left(3\right)=f'\left(f\left(3\right)\right).f'\left(3\right)=f'\left(\dfrac{3}{2}\right).\dfrac{1}{10}=\dfrac{2}{125}\)
Tiếp tuyến:
\(y=\dfrac{2}{125}\left(x-3\right)+\dfrac{6}{5}\)
Hoặc đơn giản nhất là tìm thẳng hàm g(x) ra \(g\left(x\right)=\dfrac{2\left(\dfrac{2x}{x+1}\right)}{\dfrac{2x}{x+1}+1}\) rút gọn rồi viết pttt
f'(x)=y'=-3x^2+2x
f'(2)=-3*2^2+2*2=-3*4+4=-8
f(2)=-2^3+2^2-1=-8-1+4=-9+4=-5
y=f(2)+f'(2)(x-2)
=-5+(-8)(x-2)
=-8x+16-5
=-8x+11
a: \(y=-x^2+3x-2\)
=>\(y'=-\left(2x\right)+3\cdot1\)
=>y'=-2x+3
=>\(f'\left(x_0\right)=-2\cdot x_0+3\)
b: \(f'\left(2\right)=-2\cdot2+3=-4+3=-1\)
\(f\left(2\right)=-2^2+3\cdot2-2=0\)
Phương trình tiếp tuyến của (P) tại điểm có hoành độ x=2 là:
\(y-f\left(2\right)=f'\left(2\right)\left(x-2\right)\)
=>\(y-0=-1\left(x-2\right)=-x+2\)
=>y=-x+2
c: Đặt y=0
=>\(-x^2+3x-2=0\)
=>\(x^2-3x+2=0\)
=>(x-2)(x-1)=0
=>\(\left[{}\begin{matrix}x-2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
TH1: x=2
\(f'\left(2\right)=-2\cdot2+3=-1;f\left(2\right)=-2^2+3\cdot2-2=0\)
Phương trình tiếp tuyến tại điểm có hoành độ x=2 là:
y-f(2)=f'(2)(x-2)
=>y-0=-1(x-2)
=>y=-x+2
TH2: x=1
\(f'\left(1\right)=-2\cdot1+3=1\)
f(1)=0
Phương trình tiếp tuyến tại điểm có hoành độ x=1 là:
y-f(1)=f'(1)(x-1)
=>y-0=1(x-1)
=>y=x-1
d: Gọi phương trình tiếp tuyến cần tìm là (d): y=ax+b(a<>0)
Vì (d) vuông góc với y=x+3 nên a*1=-1
=>a=-1
=>y=-x+b
=>f'(x)=-1
=>-2x+3=-1
=>-2x=-4
=>x=2
f(2)=-2^2+3*2-2=0
f'(2)=-1
Phương trình tiếp tuyến là:
y-f(2)=f'(2)(x-2)
=>y-0=-1(x-2)
=>y=-x+2
a. \(y'\left(x_0\right)=-2x_0+3\)
b. phương trình tiếp tuyến tại x0 =2 là
\(y=y'\left(x_0\right)\left(x-x_0\right)+y_0=-\left(x-2\right)+0\text{ hay }y=-x+2\)
c.\(y_0=0\Rightarrow\orbr{\begin{cases}x_0=1\\x_0=2\end{cases}\Rightarrow PTTT\orbr{\begin{cases}y=x-1\\y=-x+2\end{cases}}}\)
d. vì tiếp tuyến vuông góc với đường thẳng có hệ số góc bằng 1 nên tiếp tuyến có hệ số góc = -1
hay \(-2x_0+3=-1\Leftrightarrow x_0=2\Rightarrow PTTT:y=-x+2\)
Phương trình tiếp tuyến của đồ thị (C) của hàm số y = f(x) tại điểm Mo (xo;f(xo )) có dạng : y = f’(xo)(x – xo) + yo, trong đó yo = f(xo).