\(\le\) b \(\le\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2017

bài này xài karamata là đẹp nhất nè nhanh gọn lẹ mà ko bt bn học chưa

6 tháng 5 2017

Ahaha :D giỡn xíu lớp 8 có khi AM-HM còn chưa học :3, bài này với bn phải xài khai triển Abel ;))

\(Q=\frac{1}{c+1}+\frac{ab+abc-c-1}{\left ( a+1 \right )\left ( b+1 \right )\left ( c+1 \right )}=\frac{1}{c+1}+\frac{ab-1}{\left ( a+1 \right )\left ( b+1 \right )}\)

\(=\frac{1}{c+1}+\frac{a}{a+1}+\frac{b}{b+1}-1=\frac{a}{a+1}+\frac{b}{b+1}-\frac{c}{c+1}\)

Dự đoán dấu "=" rơi khi \(a=b-1=c-2=1\) nên c/m

\(\frac{a}{a+1}+\frac{b}{b+1}-\frac{c}{c+1}\geq \frac{5}{12}\)

\(\Leftrightarrow \left ( \frac{a}{a+1}-\frac{1}{2} \right )+\left ( \frac{b}{b+1}-\frac{2}{3} \right )+\left ( \frac{3}{4}-\frac{c}{c+1} \right )\geq 0\)

\(\Leftrightarrow \frac{a-1}{2a+2}+\frac{b-2}{3b+3}+\frac{3-c}{4c+4}\geq 0\)

\(\Leftrightarrow \left ( 3-c \right )\left ( \frac{1}{4c+4}-\frac{1}{3b+3} \right )+\left ( 3-c+b-2 \right )\left ( \frac{1}{3b+3}-\frac{1}{2a+2} \right )+\left ( 3-c+b-2+a-1 \right )\frac{1}{2a+2}\geq 0\)

\(\Leftrightarrow \frac{\left ( c-3 \right )\left ( 4c-3b+1 \right )}{12\left ( b+1 \right )\left ( c+1 \right )}+\frac{\left ( b+1-c \right )\left ( 2a-3b-1 \right )}{6\left ( b+1 \right )\left ( a+1 \right )}+\frac{a+b-c}{2a+2}\geq 0\)

Hơi xấu nhỉ nhưng xong rồi đó :)

3 tháng 5 2019

1) Áp dụng bất đẳng thức AM-GM :

\(P=\frac{a^2+b^2}{ab}+\frac{ab}{a^2+b^2}\ge2\sqrt{\frac{a^2+b^2}{ab}\cdot\frac{ab}{a^2+b^2}}=2\sqrt{1}=2\)

Dấu "=" xảy ra \(\Leftrightarrow a^2+b^2-ab=0\)

3 tháng 5 2019

1) Anh phương làm lạ zậy?

Đặt \(x=\frac{a^2+b^2}{ab}\ge\frac{2ab}{ab}=2\) (do a.b > 0 nên ta không cần viết 2|ab| thay cho 2ab)

Khi đó bài toán trở thành: Tìm giá trị nhỏ nhất của biểu thức \(P=x+\frac{1}{x}\) (với \(x\ge2\))

Ta có: \(P=\left(\frac{1}{x}+\frac{x}{4}\right)+\frac{3x}{4}\ge2\sqrt{\frac{1}{x}.\frac{x}{4}}+\frac{3x}{4}\ge1+\frac{3.2}{4}=\frac{5}{2}\)

Vậy P min là 5/2 khi x = 2

Câu 1:

Ta có: \(\left(\dfrac{a+b}{2}\right)^2\ge ab\)

\(\Leftrightarrow\dfrac{\left(a+b\right)^2}{2^2}-ab\ge0\)

\(\Leftrightarrow\dfrac{a^2+2ab+b^2-4ab}{4}\ge0\)

\(\Leftrightarrow\dfrac{a^2-2ab+b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)

\(\left(a-b\right)^2\ge0\forall a,b\)

\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)

\(\Rightarrow\left(\dfrac{a+b}{2}\right)^2\ge ab\) (1)

Ta có: \(\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)

\(\Leftrightarrow\dfrac{a^2+b^2}{2}-\dfrac{\left(a+b\right)^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{2a^2-2b^2-a^2-2ab-b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{a^2-2ab-b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)

\(\left(a-b\right)^2\ge0\forall a,b\)

\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)

\(\Rightarrow\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\) (2)

Từ (1) và (2) \(\Rightarrow ab\le\left(\dfrac{a+b}{2}\right)^2\le\dfrac{a^2+b^2}{2}\)

23 tháng 3 2018

5 , a3+b3+c3\(\ge\) 3abc

\(\Leftrightarrow\) a3+3a2b+3ab2+b3+c3-3a2b-3ab2-3abc\(\ge\) 0

\(\Leftrightarrow\) (a+b)3+c3-3ab(a+b+c) \(\ge0\)

\(\Leftrightarrow\) (a+b+c)(a2+2ab+b2-ac-bc+c2)-3ab(a+b+c) \(\ge0\)

\(\Leftrightarrow\) (a+b+c)(a2+b2+c2-ab-bc-ca)\(\ge0\) (1)

ta co : a,b,c>0 \(\Rightarrow\)a+b+c>0 (2)

(a-b)2+(b-c)2+(c-a)2\(\ge0\)

<=> 2a2+2b2+2c2-2ac-2cb-2ab\(\ge0\)

<=>a2+b2+c2-ab-bc-ac\(\ge\) 0 (3)

Từ (1)(2)(3)=> pt luôn đúng

27 tháng 6 2020

\(\left(a+b\right)\left(a^3+b^3\right)\le2\left(a^4+b^4\right)\)

\(\Leftrightarrow a^4+b^4+a^3b+ab^3\le2\left(a^4+b^4\right)\)

\(\Leftrightarrow a^4+b^4-a^3b-ab^3\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left[\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}\right]\ge0\) * đúng *

b

Hiển hiên

28 tháng 6 2020

\(\left(a+b\right)\left(a^3+b^3\right)\le2\left(a^4+b^4\right)\)

\(\Leftrightarrow a^4+b^4-a^3b-ab^3\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

Dấu "=" xảy ra <=> a=b

1 tháng 8 2017

\(Q=a^2\left(b-c\right)+b^2\left(c-b\right)+c^2\left(1-c\right)\)

\(\le b^2\left(c-b\right)+c^2\left(1-c\right)\)

\(=4.\frac{b}{2}.\frac{b}{2}.\left(c-b\right)+c^2\left(1-c\right)\)

\(\le\frac{4.\left(\frac{b}{2}+\frac{b}{2}+c-b\right)^3}{27}+c^2\left(1-c\right)\)

\(\le\frac{4.c^3}{27}+c^2\left(1-c\right)\)

\(=c^2\left(1-\frac{23c}{27}\right)\)

\(=\frac{23c}{54}.\frac{23c}{54}.\left(1-\frac{23c}{27}\right).\frac{2916}{529}\)

\(\le\frac{2916}{529}.\frac{\left(\frac{23c}{54}+\frac{23c}{54}+1-\frac{23c}{27}\right)^3}{27}=\frac{108}{529}\)

Dấu = xảy ra khi \(a=0;b=\frac{12}{23};c=\frac{18}{23}\)

1 tháng 8 2017

CÁC KIẾN THỨC CẦN LƯU Ý A ≥ B ⇔ A − B ≥ 0 1/Định nghĩa  A ≤ B ⇔ A − B ≤ 0 2/Tính chất + A>B ⇔ B < A + A>B và B >C ⇔ A > C + A>B ⇒ A+C >B + C + A>B và C > D ⇒ A+C > B + D + A>B và C > 0 ⇒ A.C > B.C + A>B và C < 0 ⇒ A.C < B.C + 0 < A < B và 0 < C <D ⇒ 0 < A.C < B.D + A > B > 0 ⇒ A n > B n ∀n + A > B ⇒ A n > B n với n lẻ + A > B ⇒ A n > B n với n chẵn + m > n > 0 và A > 1 ⇒ A m > A n + m > n > 0 và 0 <A < 1 ⇒ A m < A n 1 1 +A < B và A.B > 0 ⇒ > A B 3/Một số hằng bất đẳng thức + A 2 ≥ 0 với ∀ A ( dấu = xảy ra khi A = 0 ) + An ≥ 0 với ∀ A ( dấu = xảy ra khi A = 0 ) + A ≥ 0 với ∀A (dấu = xảy ra khi A = 0 ) + -A <A= A + A + B ≥ A + B ( dấu = xảy ra khi A.B > 0) + A − B ≤ A − B ( dấu = xảy ra khi A.B < 0)Sưu tầm và tuyển chọn 1

Anh để ý trên mục Toán lớp 8 có một câu hỏi được nhiều người đăng cùng lúc, nên anh xin trả lời câu hỏi đó.Đề: Cho \(1\le a,b,c\le3\) và \(a+b+c=6\) . Tìm \(max\) của biểu thức \(f\left(a,b,c\right)=a^2+b^2+c^2\).Trong đó kí hiệu \(f\left(x,y,z\right)\) là đa thức khi thay \(a=x,b=y,c=z\), tức là \(f\left(x,y,z\right)=x^2+y^2+z^2\).-----Nhận xét: Trong 3 số \(a,b,c\) phải có số lớn hơn bằng 2. Không...
Đọc tiếp

Anh để ý trên mục Toán lớp 8 có một câu hỏi được nhiều người đăng cùng lúc, nên anh xin trả lời câu hỏi đó.

Đề: Cho \(1\le a,b,c\le3\) và \(a+b+c=6\) . Tìm \(max\) của biểu thức \(f\left(a,b,c\right)=a^2+b^2+c^2\).

Trong đó kí hiệu \(f\left(x,y,z\right)\) là đa thức khi thay \(a=x,b=y,c=z\), tức là \(f\left(x,y,z\right)=x^2+y^2+z^2\).

-----

Nhận xét: Trong 3 số \(a,b,c\) phải có số lớn hơn bằng 2. Không mất tính tổng quát gọi số đó là \(a\).

Khi đó \(b+c-1\le5-a=3\)

Ta có \(f\left(a,b,c\right)=a^2+b^2+c^2\) và \(f\left(a,b+c-1,1\right)=a^2+\left(b+c-1\right)^2+1\).

Ta sẽ CM \(f\left(a,b,c\right)\le f\left(a,b+c-1,1\right)\).

Biến đổi tương đương ta được \(b^2+c^2\le b^2+c^2+2bc-2b-2c+2\Leftrightarrow\left(b-1\right)\left(c-1\right)\ge0\).

Điều này đúng. Vậy \(f\left(a,b,c\right)\le f\left(a,b+c-1,1\right)\).

Nhận thấy do \(a+b+c=6\) nên \(f\left(a,b+c-1,1\right)=f\left(a,5-a,1\right)=a^2+\left(5-a\right)^2+1=2\left(a^2-5a+13\right)\).

Ta sẽ tìm max của biểu thức này. Giá trị max đó là \(14\), xảy ra khi \(a=2\)

Vậy \(f\left(a,b,c\right)\le14\). Đẳng thức xảy ra tại \(a=2,b=3,c=1\).

------

Ý tưởng tương tự trên sẽ giúp các em làm được bài toán sau:

Cho \(0\le a,b,c\le2\) thoả \(a+b+c=3\). Tìm min của biểu thức \(ab+bc+ca\).

3
2 tháng 1 2017

À có ai không hiểu gì thì hỏi nha! Còn ai muốn click "đúng" cho anh thì cho anh cảm ơn!

5 tháng 9 2019

Cách khác cho bài đầu: 

Ta có: \(a+b=6-c\le5\)

\(a^2+b^2+c^2=a.a+b.b+c.c\)

\(=\left(a-b\right)a+\left(b-c\right)\left(a+b\right)+c\left(a+b+c\right)\)

\(\le\left(a-b\right).3+5\left(b-c\right)+6c\)

\(=3a+2b+c=\left(a+b+c\right)+a+\left(a+b\right)\)

\(\le6+3+5=14\)

Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(3;2;1\right)\) và các hoán vị của nó.

Cách này dường như ez hơn ấy nhỉ? Mà đúng không ta:3