Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b-c\right)^3>0\Leftrightarrow\left(a+b\right)^3-c^3-3\left(a+b\right)c\left(a+b-c\right)>0\)
\(\Leftrightarrow a^3+b^3+3\left(a+b\right)\left[ab-c\left(a+b-c\right)\right]>c^3\)
\(\Leftrightarrow a^3+b^3+3\left(a+b\right)\left[ab-ca-cb+c^2\right]>c^3\)
\(\Leftrightarrow a^3+b^3+3\left(a+b\right)\left[a\left(b-c\right)-c\left(b-c\right)\right]>c^3\)
\(\Leftrightarrow a^3+b^3+3\left(a+b\right)\left(a-c\right)\left(b-c\right)>c^3\)
Mặt khác : \(abc\ge\left(a+b\right)\left(a-c\right)\left(b-c\right)\)( chứng minh hộ mình cái )
=> dpcm
Đặt \(\frac{\left(a+b-c\right)}{2}=x;\frac{\left(c+a-b\right)}{2}=y;\frac{\left(b+c-a\right)}{2}=z\) thì x, y, z > 0(do a, b, c là độ dài 3 cạnh tam giác)
Và \(a=x+y;b=x+z;c=y+z\)
Thay vào, ta cần chứng minh: \(2\left[xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+6xyz\right]>0\) (luôn đúng do x, y, z > 0)
Done!