Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài ta có x = a/m, y = b/m (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y
\(x>y\Rightarrow a>b\)
\(\Rightarrow\frac{a}{m}=\frac{2a}{2m}>\frac{a+b}{2m}>\frac{2b}{2m}=\frac{b}{m}\)
\(\Rightarrow x>z>y\)
Vì x+y=1 và x>0;y>0 nên \(\frac{a^2}{x};\frac{b^2}{y}\)có nghĩa
Ta có: \(a^2\ge0\forall a\)
\(b^2\ge0\forall b\)
GTNN của B đạt được \(\Leftrightarrow a^2;b^2\)nhỏ nhất
GTNN của \(a^2;b^2\)là 0
\(\Rightarrow GTNN\)của P là \(\frac{0}{x}+\frac{0}{y}=0\)
Vậy GTNN của P là 0
Ta có: x<y⇔a/m<b/m⇔a<bx(1)
Từ (1), Suy ra:
a<b⇔a+a<b+a⇔2a<a+b(2)
a<b⇔a+b<b+b⇔a+b<2b(3)
Từ (2);(3), ta có:
2a<a+b<2b⇔2a/2m<a+b/2m<2b/2m
⇔x<z<y(đpcm)
Vì x<y nên :
# \(\frac{a}{m}< \frac{b}{m}\) #\(\frac{a}{m}< \frac{b}{m}\)
\(\frac{a}{m}+\frac{a}{m}< \frac{b}{m}+\frac{a}{m}\) \(\frac{a}{m}+\frac{b}{m}< \frac{b}{m}+\frac{b}{m}\)
\(\frac{2a}{m}< \frac{a+b}{m}\) \(\frac{a+b}{m}< \frac{2b}{m}\)
\(\frac{2a}{2m}< \frac{a+b}{2m}\) \(\frac{a+b}{2m}< \frac{2b}{2m}\)
\(\frac{a}{m}< \frac{a+b}{2m}\) \(\frac{a+b}{2m}< \frac{b}{m}\)
=> x < z ( 1 ) => z < y ( 2)
TỪ (1) VÀ (2) TA SUY RA X < Z < Y
( Nếu có chỗ nào bạn ko hỉu thì ib cho mik nha mk sẽ chỉ bn ha ) ( ý mà nhớ là ..... ( ai cx muốn hì....hì...) )
\(P=a.x^m+b.\frac{1}{x^n}\)
Áp dụng BĐT Co-si cho 2 số dương \(a.x^m\)và \(b.\frac{1}{x^n}\), ta có :
\(a.x^m+b.\frac{1}{x^n}\ge2\sqrt{\frac{ab.x^m}{x^n}}\)
\(\Rightarrow a.x^m+b.\frac{1}{x^n}\ge2\sqrt{ab.x^{m-n}}\)
Vì \(2\sqrt{ab.x^{m-n}}\)Luôn \(\ge0\)\(\Rightarrow\)\(P_{min}=0\Leftrightarrow2\sqrt{ab.x^{m-n}}=0\)
Mà \(a,b>0\Rightarrow x^{m-n}=0\Leftrightarrow m-n=0\Rightarrow m=n\)
Vậy \(P_{min}=0\Leftrightarrow m=n\)
đáp án sai. hướng làm thì ok