K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2016

Theo t/c dãy tỉ số=nhau:

\(\frac{a+b}{a+c}=\frac{a-b}{a-c}=\frac{a+b-\left(a-b\right)}{a+c-\left(a-c\right)}=\frac{2b}{2c}=\frac{b}{c}\)  \(=>b=c\)

Thay vào P,ta có:

\(P=\frac{10b^2+9bc+c^2}{2b^2+bc+2c^2}=\frac{10c^2+9c^2+c^2}{2c^2+c^2+2c^2}=4\)

16 tháng 5 2016

1) \(D=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+....+\frac{10}{1400}\)

\(D=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+.....+\frac{5}{700}\)

\(D=\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+......+\frac{5}{25.28}\)

\(D=\frac{5}{3}.\left(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+.....+\frac{3}{25.28}\right)\)

\(D=\frac{5}{3}.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+....+\frac{1}{25}-\frac{1}{28}\right)\)

\(D=\frac{5}{3}.\left(\frac{1}{4}-\frac{1}{28}\right)=\frac{5}{3}.\frac{6}{28}=\frac{5}{14}\)

\(E=\frac{1}{1+2}+\frac{1}{1+2+3}+.......+\frac{1}{1+2+3+....+24}\)

Ta có: \(1+2=\)\(\frac{2.\left(2+1\right)}{2}=3\);\(1+2+3=\frac{3.\left(3+1\right)}{2}=6\);\(1+2+3+...+24=\frac{24.\left(24+1\right)}{2}=300\)

\(E=\frac{1}{3}+\frac{1}{6}+....+\frac{1}{300}\)

=>\(\frac{1}{2}E=\frac{1}{6}+\frac{1}{12}+.....+\frac{1}{600}=\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{24.25}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{24}-\frac{1}{25}=\frac{1}{2}-\frac{1}{25}=\frac{23}{50}\)

=>\(E=\frac{46}{50}\)

Vậy \(\frac{D}{E}=\frac{5}{14}:\frac{46}{50}=\frac{250}{644}=\frac{125}{322}\)

16 tháng 5 2016

2) Theo t/c dãy tỉ số=nhau:

\(\frac{a+b}{a+c}=\frac{a-b}{a-c}=\frac{a+b-\left(a-b\right)}{a+c-\left(a-c\right)}=\frac{a+b-a+b}{a+c-a+c}=\frac{2b}{2c}=1\)

=>b=c

do đó \(A=\frac{10b^2+9bc+c^2}{2b^2+bc+2c^2}=\frac{10b^2+9b^2+b^2}{2b^2+b^2+2b^2}=\frac{\left(10+9+1\right).b^2}{\left(2+1+2\right).b^2}=4\)

26 tháng 2 2017

\(\frac{a+b}{a+c}=\frac{a-b}{a-c}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(a+c\right)+\left(a-c\right)}=\frac{2a}{2a}=1\)

\(\Rightarrow a+b=a+c\Rightarrow b=c\)Thay vao biểu thức trên đề bài ta được :

\(\frac{10b^2+9bc+c^2}{2b^2+bc+2c^2}=\frac{10b^2+9b^2+b^2}{2b^2+b^2+2b^2}=\frac{20b^2}{5b^2}=\frac{20}{5}=4\)

4 tháng 8 2017

Ta có :

\(\frac{a+b}{a+c}=\frac{a-b}{a-c}=\frac{a+b-a+b}{a+c-a+c}=\frac{2b}{2c}=\frac{b}{c}\) (1)

\(\frac{a+b}{a+c}=\frac{a-b}{a-c}=\frac{a+b+a-b}{a+c+a-c}=\frac{2a}{2a}=1\) (2)

Từ (1) ; (2) \(\Rightarrow\frac{b}{c}=1\Rightarrow b=c\)

\(\Rightarrow\frac{10b^2+9bc+c^2}{2b^2+bc+2c^2}=\frac{10b^2+9b^2+b^2}{2b^2+b^2+2b^2}=\frac{20b^2}{5b^2}=4\)

20 tháng 11 2015

\(\frac{a+b}{a+c}=\frac{a-b}{a-c}=\frac{a+b+a-b}{a+c+a-c}=1\Rightarrow a+b=a+c\Rightarrow b=c\)

\(\text{Suy ra: }A=\frac{10b^2+9bc+c^2}{2b^2+bc+2c^2}=\frac{10b^2+9b^2+b^2}{2b^2+b^2+2b^2}=\frac{20b^2}{5b^2}=4\)

thể hiện đấy

30 tháng 12 2016

khó thế

7 tháng 1 2018

sai de roi

26 tháng 7 2017

\(\frac{a+b}{a+c}=\frac{a-b}{a-c}\Leftrightarrow\left(a+b\right)\left(a-c\right)=\left(a+c\right)\left(a-b\right)\)

\(\Leftrightarrow a^2+ab-ac-bc=a^2+ac-ab-bc\Leftrightarrow ab-ac=ac-ab\)

<=>2ab=2ac<=>ab=ac<=>b=c

giờ thì dễ rồi, bạn tự thay vào biểu thức

27 tháng 7 2017

@Trà My t vẫn k hiểu. C làm nốt được k?