K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 1

\(a^2+b^2=7ab\Leftrightarrow a^2+b^2+2ab=9ab\)

\(\Leftrightarrow\left(a+b\right)^2=9ab\Leftrightarrow\dfrac{\left(a+b\right)^2}{9}=ab\)

\(\Leftrightarrow\left(\dfrac{a+b}{3}\right)^2=ab\)

Lấy logarit cơ số 2 hai vế:

\(log_2\left(\dfrac{a+b}{3}\right)^2=log\left(ab\right)\)

\(\Leftrightarrow2log_2\left(\dfrac{a+b}{3}\right)=log_2a+log_2b\)

29 tháng 1

https://hoc24.vn/cau-hoi/.8778209332689

giúp em ạ

11 tháng 5 2016

\(D=\frac{\log_2\left(2a^2\right)+\left(\log_2a\right)a^{\log_2\left(\log_2a+1\right)}+\frac{1}{2}\log^2_2a^4}{\log_2a^3\left(3\log_2a+1\right)+1}=\frac{1+2\log_2a+\log_2a\left(\log_2a+1\right)+8\log^2_2a}{3\log_2a.\left(3\log_2a+1\right)+1}\)

    \(=\frac{9\log^2_2a+3\log_2a+1}{9\log^2_2a+3\log_2a+1}=1\)

7 tháng 11 2017

17 tháng 7 2018

14 tháng 6 2018

Đáp án A

25 tháng 5 2023

Theo giả thiết kết hợp sử dụng BĐT AM - GM có:

\(\left(a+b-c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{c}\right)=\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+1-\left[c\left(a+b\right)+c\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\right]\)

\(\le\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+1-2\sqrt{\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)}=\left[\sqrt{\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)}-1\right]^2\)

Suy ra \(\sqrt{\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)}-1\ge2\Leftrightarrow\sqrt{\dfrac{a}{b}+\dfrac{b}{a}+2}\ge3\)

\(\Leftrightarrow\dfrac{a}{b}+\dfrac{b}{a}\ge7\)

Khi đó, sử dụng BĐT Cauchy - Schwarz ta có:

\(\left(a^4+b^4+c^4\right)\left(\dfrac{1}{a^4}+\dfrac{1}{b^4}+\dfrac{1}{c^4}\right)\ge\left[\sqrt{\left(a^4+b^4\right)\left(\dfrac{1}{a^4}+\dfrac{1}{b^4}\right)}+1\right]^2\)

\(=\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}+1\right)^2=\left[\left(\dfrac{a}{b}+\dfrac{b}{a}\right)^2-1\right]^2\ge\left(7^2-1\right)^2=2304\)

Đẳng thức xảy ra khi và chỉ khi \(ab=c^2\) và \(\dfrac{a}{b}+\dfrac{b}{a}=7\)

(a+b-c)(1/a+1/b-c)=(a+b)(1/a+1/b)+1-[c(a+b)+c(1/a+1/b)]<=(a+b)(1/a+1/b)+1-2căn (a+b)(1/a+1/b)

=[(căn (a+b)(1/a+1/b))-1]^2

=>\(\sqrt{\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)}-1>=2\)

=>\(\sqrt{\dfrac{a}{b}+\dfrac{b}{a}+2}>=3\)

=>a/b+b/a>=7

(a^4+b^4+c^4)(1/a^4+1/b^4+1/c^4)>=[căn ((a^4+b^4)(1/a^4+1/b^4))+1]^2

=(a^2/b^2+b^2/a^2+1)^2=[(a/b+b/a)^2-1]^2>=(7^2-1)^2=2304

=>ĐPCM

a:

ĐKXĐ: x+1>0 và x>0

=>x>0

=>\(log_2\left(x^2+x\right)=1\)

=>x^2+x=2

=>x^2+x-2=0

=>(x+2)(x-1)=0

=>x=1(nhận) hoặc x=-2(loại)

c: ĐKXĐ: x-1>0 và x-2>0

=>x>2

\(PT\Leftrightarrow log_2\left(x^2-3x+2\right)=3\)

=>\(\Leftrightarrow x^2-3x+2=8\)

=>x^2-3x-6=0

=>\(\left[{}\begin{matrix}x=\dfrac{3+\sqrt{33}}{2}\left(nhận\right)\\x=\dfrac{3-\sqrt{33}}{2}\left(loại\right)\end{matrix}\right.\)

29 tháng 5 2019

Chọn B