Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để chứng minh rằng ama + bmb + cmc ≥ √32, ta sử dụng bất đẳng thức tam giác. Bất đẳng thức tam giác cho biết rằng tổng độ dài của ba đường trung tuyến của một tam giác luôn lớn hơn hoặc bằng bình phương độ dài cạnh tương ứng. Vì vậy, ta có:
ama + bmb + cmc ≥ (ma + mb + mc)²/3
Theo định lý đường trung tuyến, ta biết rằng ma + mb + mc = 3/2(a + b + c). Thay vào biểu thức trên, ta có:
ama + bmb + cmc ≥ (3/2(a + b + c))²/3
Simplifying the expression, we get:
ama + bmb + cmc ≥ 3/4(a + b + c)²
Để chứng minh rằng ama + bmb + cmc ≥ √32, ta cần chứng minh rằng 3/4(a + b + c)² ≥ √32. Tuy nhiên, để chứng minh điều này, cần thêm thông tin về giá trị của a, b, c.
Ta có: \(a+b+c=3\)
Áp dụng BĐT Cauchy - Schwarz ta có:
\(P=\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{b+c+c+a+a+b}\)
\(P=\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{2\cdot\left(a+b+c\right)}\)
\(P=\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{3^2}{2\cdot3}=\dfrac{3}{2}\)
__________________
Nhắc lại BĐT Cauchy - Schwarz:
\(\dfrac{x^2_1}{a_1}+\dfrac{x^2_2}{a_2}+\dfrac{x^2_3}{a_3}+...+\dfrac{x^2_n}{a_n}\ge\dfrac{\left(x_1+x_2+...+x_n\right)^2}{a_1+a_2+...+a_n}\)
(p/s: bạn xem lại để nhé !)
\(\dfrac{cosA}{a}+\dfrac{cosB}{b}+\dfrac{cosC}{c}\)
\(=\dfrac{b^2+c^2-a^2}{2abc}+\dfrac{a^2+c^2-b^2}{2abc}+\dfrac{a^2+b^2-c^2}{2abc}\)
\(=\dfrac{a^2+b^2+c^2}{2abc}\) (đpcm)
a2 = b2 + c2 - 2bc.cosA
b2 = a2 + c2 - 2ac.cosB
c2 = a2 + b2 - 2ab.cosC
⇒ a2 + b2 + c2 = 2bc.cosA + 2ac.cosB + 2ab.cosC
⇒ VT = \(\dfrac{2bc.cosA}{2abc}+\dfrac{2ab.cosC}{2abc}+\dfrac{2ac.cosB}{2abc}\)
⇒ VT = \(\dfrac{cosA}{a}+\dfrac{cosB}{b}+\dfrac{cosC}{c}\)
Ta chứng minh được:
\(\left(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ca}{b}\right)^2\ge3\left(a^2+b^2+c^2\right)\)
Thật vậy, bđt đúng với \(\left(\dfrac{ab}{c};\dfrac{bc}{a};\dfrac{ca}{b}\right)=\left(x;y;z\right)\)
\(\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)
\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
Đẳng thức xảy ra khi x=y=z=> BĐT cần chứng minh xảy ra dấu bằng khi a=b=c
\(\Rightarrow\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ca}{b}\ge3\)
ta có \(a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}\Leftrightarrow1\ge\sqrt[3]{a^2b^2c^2}\)
a) theo bđt cauchy schwarz ta có
\(\dfrac{a^3b^3}{c}+\dfrac{b^3c^3}{a}+\dfrac{c^3a^3}{b}\ge3\sqrt[3]{\dfrac{a^6b^6c^6}{abc}}=3\dfrac{a^2b^2c^2}{\sqrt[3]{abc}.1}\ge3\dfrac{a^2b^2c^2}{\sqrt[3]{a^3b^3c^3}}=3abc\)
Đặt \(D=\dfrac{\text{x}^2+a}{xy+a}\)
\(E=\dfrac{y^2+b}{yz+b}\)
\(F=\dfrac{z^2+c}{xz+c}\)
Dự đoán: Đẳng thức xảy ra khi: D=E=F=1
Áp dụng bđt AM_GM :
||bđt có được dùng ngược lại giống như đl Ta-let/ Py-ta-go ko??||
\(\dfrac{x^2+a}{yz+b}\cdot\dfrac{y^2+b}{xz+c}\cdot\dfrac{z^2+c}{xy+a}\ge1\)
\(\Leftrightarrow\dfrac{\text{x}^2+a}{xy+a}\cdot\dfrac{y^2+b}{yz+b}\cdot\dfrac{z^2+c}{xz+c}\ge1\) (*)
*Nhận xét: Giá trị của VT phụ thuộc vào x,y,z .
Trong 3 số x,y,z có ít nhất 1 số >/ các số còn lại => trong 3 đa thức D, E, F có ít nhất 1 đa thức >/ 1 với mọi x,y,z,a,b,c dương
\(\Rightarrow\) (*) đúng
Hay \(\dfrac{x^2+a}{yz+b}+\dfrac{y^2+b}{xz+c}+\dfrac{z^2+c}{xy+a}\ge3\) \(\forall x,y,z,a,b,c>0\)
Dấu "=" xảy ra khi D=E=F=1 , hay x=y=z
|| kết luận viết như nào đây........||
----------------------
Không biết có đúng không nữa, sai sót gì sư phụ góp ý cho con nhá..... nhớ góp ý nhẹ nhẹ thôi không là broken heart T_T!! Cảm ơn ạ
Áp dụng BĐT AM-GM:
\(\sum\dfrac{x^2+a}{yz+b}\ge\sum\dfrac{2\left(x^2+a\right)}{y^2+z^2+2b}\)
Đặt \(x^2+y^2+y^2+a+b+c=m\)(m>0)
Áp dụng BĐT chebyshev:
\(\left[\dfrac{2\left(x^2+a\right)}{y^2+z^2+2b}+\dfrac{2\left(y^2+b\right)}{x^2+z^2+2c}+\dfrac{2\left(z^2+c\right)}{x^2+y^2+2a}\right]\left[\left(y^2+z^2+2b\right)+\left(x^2+z^2+2c\right)+\left(x^2+y^2+2a\right)\right]\ge6\left(x^2+y^2+z^2+a+b+c\right)\)
hay \(VT.2m\ge6m\Leftrightarrow VT\ge3\)
Điều này đúng khi ta có thứ tự sắp biến sau:
\(\left\{{}\begin{matrix}\dfrac{x^2+a}{y^2+z^2+2b}\ge\dfrac{y^2+b}{x^2+z^2+2c}\ge\dfrac{z^2+c}{x^2+y^2+2a}\\y^2+z^2+2b\le x^2+z^2+2c\le x^2+y^2+2a\end{matrix}\right.\)
Thật vậy, giả sử \(x\ge y\ge z\) và \(a=max\left\{a,b,c\right\}\) thì điều trên đúng
P/s : dòng cuối em chém đó, sir giải quyết nốt đi,mắc khúc cuối :v
\(\sum\left(\dfrac{a^2}{b}\right)=\sum\left(\dfrac{a^4}{a^2b}\right)\ge\dfrac{\sum^2a^2}{\sum a^2b}\ge\dfrac{\sum^2a^2}{\sqrt{\sum a^2\cdot\sum a^2b^2}}\)
\(\Rightarrow\sum\left(\dfrac{a^2}{b}\right)\ge\dfrac{\sum^2a^2}{\sqrt{\dfrac{1}{3}\sum a^2\cdot\sum^2a^2}}=\sqrt{3\sum a^2}\)
Lời giải:
Đặt \((b+c-a, c+a-b, a+b-c)=(x,y,z)\Rightarrow (a,b,c)=(\frac{y+z}{2}; \frac{x+z}{2}; \frac{x+y}{2})\)
Tất nhiên $x,y,z>0$ vì $a,b,c$ là 3 cạnh tam giác.
Khi đó, áp dụng BĐT Cô-si cho các số dương:
\(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}=\frac{y+z}{2x}+\frac{x+z}{2y}+\frac{x+y}{2z}\)
\(\geq 3\sqrt[3]{\frac{(y+z)(x+z)(x+y)}{8xyz}}\geq 3\sqrt[3]{\frac{2\sqrt{yz}.2\sqrt{xz}.2\sqrt{xy}}{8xyz}}=3\)
Ta có đpcm
b) Vẫn cách đặt giống phần a. Áp dụng BĐT Cô-si:
\(\frac{a}{a+b-c}+\frac{b}{b+c-a}+\frac{c}{c+a-b}=\frac{y+z}{2z}+\frac{x+z}{2x}+\frac{x+y}{2y}=\frac{y}{2z}+\frac{z}{2x}+\frac{x}{2y}+\frac{3}{2}\)
\(\geq 3\sqrt[3]{\frac{y}{2z}.\frac{z}{2x}.\frac{x}{2y}}+\frac{3}{2}=\frac{3}{2}+\frac{3}{2}=3\)
Ta có đpcm.