\(x^2+ax+1=0\), 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2020

Ta có:

\(\Delta_1+\Delta_2+\Delta_3=a^2-4b+b^2-4c+c^2-4a=a^2+b^2+c^2-48\)

Dễ thấy:\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=48\Rightarrow\Delta_1+\Delta_2+\Delta_3\ge0\)

Khi đó có ít nhất một phương trình có nghiệm

27 tháng 8 2020

còn c/m vô nghiệm thế nào z

21 tháng 4 2020

Gọi nghiệm chung của 2 phương trình là m

Ta có:\(m^2+am+1=0;m^2+bm+17=0\)

\(\Rightarrow2m^2+m\left(a+b\right)+18=0\)

Xét \(\Delta=\left(a+b\right)^2-144\ge0\Rightarrow\left|a+b\right|\ge12\)

Mà \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\ge12\)

Xét \(a+b=12\Rightarrow.....\)

Xét \(a+b=-12\Rightarrow....\)

Mấy chỗ ..... bạn tự làm nốt

5 tháng 2 2022

a) Xét phương trình thứ nhất, có \(\Delta_1=b^2-4ac\)

Xét phương trình thứ hai, có \(\Delta_2=b^2-4ca=b^2-4ac\)

Từ đó ta có \(\Delta_1=\Delta_2\), do đó, khi phương trình (1) có nghiệm \(\left(\Delta_1\ge0\right)\)thì \(\Delta_2\ge0\)dẫn đến phương trình (2) cũng có nghiệm và ngược lại.

Vậy 2 phương trình đã cho cùng có nghiệm hoặc cùng vô nghiệm.

b) Vì \(x_1,x_2\)là 2 nghiệm của phương trình (1) nên theo định lý Vi-ét, ta có \(x_1x_2=\frac{c}{a}\)

Tương tự, ta có \(x_1'x_2'=\frac{a}{c}\)

Từ đó \(x_1x_2+x_1'x_2'=\frac{c}{a}+\frac{a}{c}\)

Nếu \(\hept{\begin{cases}a>0\\c>0\end{cases}}\)hay \(\hept{\begin{cases}a< 0\\c< 0\end{cases}}\)thì \(\hept{\begin{cases}\frac{c}{a}>0\\\frac{a}{c}>0\end{cases}}\), khi đó có thể áp dụng bất đẳ thức Cô-si cho 2 số dương \(\frac{c}{a}\)và \(\frac{a}{c}\):

\(\frac{c}{a}+\frac{a}{c}\ge2\sqrt{\frac{c}{a}.\frac{a}{c}}=2\), dẫn đến \(x_1x_2+x_1'x_2'\ge2\)

Nhưng nếu \(\hept{\begin{cases}a>0\\c< 0\end{cases}}\)hay \(\hept{\begin{cases}a< 0\\c>0\end{cases}}\)thì \(\hept{\begin{cases}\frac{c}{a}< 0\\\frac{a}{c}< 0\end{cases}}\),như vậy \(\frac{c}{a}+\frac{a}{c}< 0< 2\)dẫn đến \(x_1x_2+x_1'x_2'< 2\)

Như vậy không phải trong mọi trường hợp thì \(x_1x_2+x_1'x_2'>2\)

3 tháng 6 2018

Để 2 pt \(x^2+ax+bc=0\)(1) 

         và \(x^2+bc+c=0\)  (2)

thì \(\hept{\begin{cases}\Delta_1=a^2-4bc\ge0\\\Delta_2=b^2-4ac\ge0\end{cases}}\)

Gọi 2 nghiệm của pt (1) là \(x_0\)\(x_1\)và 2 nghiệm của pt (2) là \(x_0\)\(x_2\)

( Nghiệm chung là \(x_0\))

Theo Vi-et , ta có :

\(\hept{\begin{cases}x_0+x_1=-a\\x_0.x_1=bc\end{cases}}\)và    \(\hept{\begin{cases}x_0+x_2=-b\\x_0.x_2=ac\end{cases}}\)

Suy ra :

\(\hept{\begin{cases}\left(x_0+x_1\right)-\left(x_0+x_2\right)=\left(-a\right)-\left(-b\right)\\\frac{x_0.x_1}{x_0.x_2}=\frac{bc}{ac}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_1-x_2=b-a\\\frac{x_1}{x_2}=\frac{b}{a}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_1=\frac{b}{a}.x_2\\\frac{b}{a}.x_2-x_2=b-a\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_2.\left(\frac{b}{a}-1\right)=b-a\Leftrightarrow x_2.\frac{b-a}{a}=b-a\\x_1=\frac{b}{a}.x_2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_2=a\\x_1=b\end{cases}}\)

Vì \(x_1=b\)và  \(x_0.x_1=bc\)nên \(x_0=c\)

Suy ra : \(x_0+x_1=-a\)\(\Leftrightarrow x_1+a=-x_0\)\(\Leftrightarrow x_1+x_2=-c\)

                                                                                   Mà \(x_1.x_2=ab\)

Suy ra : \(x_1\)và \(x_2\)là 2 nghiệm của pt : \(x^2+cx+ab=0\)

21 tháng 4 2020

Gọi x0 là nghiệm chung của 2 phương trình

Ta có:\(x_0^2+ax_0+bc=0;x_0^2+bx_0+ca=0\)

\(\Rightarrow\left(a-b\right)x_0=c\left(a-b\right)\)

Mà \(a\ne b\Rightarrow x_0=c\)

Gọi các nghiệm của phương trình x2 +ax + bc = 0 và x2 + bx + ac = 0 là x1 và x2

Theo Viet ta có:\(x_0x_1=bc;x_0x_2=ca\)

Mà \(x_0=c\ne0\Rightarrow x_1=b;x_2=a\)

Do b;c là các nghiệm của phương trình x2 +ax + bc = 0 nên b+c=-a => -c=a+b => a,b là các nghiệm của phương trình:

x2 - ( a+b ) x + ab = 0 hay x2 + cx + ab = 0