Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\hept{1\begin{cases}\frac{a_2}{a_1}=x\\\frac{b_2}{b_1}=y\\\frac{c_2}{c_1}=z\end{cases}}\)
Thì bài toán thành
x + y + z = 1(1); \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\left(2\right)\)
Chứng minh x2 + y2 + z2 = 1
Từ (2) ta có \(\frac{xy+yz+zx}{xyz}=0\Leftrightarrow xy+yz+zx=0\)
Từ (1) ta có
(x + y + z)2 = 1
<=> x2 + y2 + z2 + 2(xy + yz + zx) = 0
<=> x2 + y2 + z2 = 1
Ta có :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=4\)
\(\Leftrightarrow2+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=4\)
\(\Leftrightarrow\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}=1\)
\(\Leftrightarrow\frac{a+b+c}{abc}=1\Leftrightarrow a+b+c=abc\left(đpcm\right)\)
Câu hỏi của trần trúc quỳnh - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
Xét hiệu \(S_1-S_2=\frac{a^2-b^2}{a+b}+\frac{b^2-c^2}{b+c}+\frac{c^2-a^2}{c+a}\)
\(=\frac{\left(a-b\right)\left(a+b\right)}{a+b}+\frac{\left(b-c\right)\left(b+c\right)}{b+c}+\frac{\left(c-a\right)\left(c+a\right)}{c+a}\)
\(=a-b+b-c+c-a\)
\(=0\)
\(\Rightarrow S_1=S_2\)
+) Áp dụng bđt AM-GM ta có:
\(\frac{a^2}{a+b}+\frac{a+b}{4}\ge2\sqrt{\frac{a^2}{a+b}.\frac{a+b}{4}}=a\)
\(\frac{b^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{b^2}{b+c}.\frac{b+c}{4}}=b\)
\(\frac{c^2}{c+a}+\frac{c+a}{4}\ge2\sqrt{\frac{c^2}{c+a}.\frac{c+a}{4}}=c\)
Cộng theo vế các đẳng thức trên ta được:
\(S_1+\frac{a+b+c}{2}\ge a+b+c\)
\(\Rightarrow S_1\ge\frac{a+b+c}{2}\left(đpcm\right)\)
dit me may