Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Phương trình thể hiện dân số sau t năm gấp đôi dân số ban đầu là:
\(S=2S.e^{1,14.t}\Leftrightarrow2e^{1,14t}=1\Leftrightarrow e^{1,14t}=\dfrac{1}{2}\)
b) Phương trình vừa tìm được có ẩn là t và nằm ở vị trí mũ của lũy thừa
Điều kiện x ≥ 3, x ∈ N. Phương trình đã cho có dạng:
Suy ra x=12.
Chọn B.
Không gian mẫu khi gieo con súc sắc cân đối và đồng chất:
Ω = {1, 2, 3, 4, 5, 6}
⇒ n(Ω) = 6
Đặt A: "con súc sắc xuất hiện mặt b chấm";
Xét : x2 + bx + 2 = 0 (1)
Δ = b2 – 8
a. Phương trình (1) có nghiệm
⇔ Δ ≥ 0 ⇔ b ≥ 2√2
⇒ b ∈ {3; 4; 5; 6}.
⇒ A = {3, 4, 5, 6}
⇒ n(A) = 4
b. (1) vô nghiệm
⇔ Δ < 0 ⇔ b ≤ 2√2
⇒ b ∈ {1; 2}
⇒ A = {1, 2}
⇒ n(A) = 2
c. phương trình (1) có nghiệm
⇔ b ∈ {3; 4; 5; 6}.
Thử các giá trị của b ta thấy chỉ có b = 3 phương trình cho nghiệm nguyên.
⇒ A = {3}
⇒ n(A) = 1
Không gian mẫu là Ω = {1, 2, 3, 4, 5, 6}. Số kết quả có thế có thể có là 6 (hữu hạn); các kết quả đồng khả năng.
Ta có bảng:
b |
1 |
2 |
3 |
4 |
5 |
6 |
∆ = b2 - 8 |
-7 |
-4 |
1 |
8 |
17 |
28 |
a) Phương trình x2 + bx + 2 = 0 có nghiệm khi và chỉ khi ∆ = b2 - 8 ≥ 0 (*). Vì vậy nếu A là biến cố: "Xuất hiện mặt b chấm sao cho phương trình x2 + bx + 2 = 0 có nghiệm"
thì A = {3, 4, 5, 6}, n(A) = 4 và
P(A) = = .
b) Biến cố B: "Xuất hiện mặt b chấm sao cho phương trình x2 + bx + 2 = 0 vô nghiệm" là biến cố A, do đó theo qui tắc cộng xác suất ta có
P(B) = 1 - P(A) = .
c) Nếu C là biến cố: "Xuất hiện mặt b chấm sao cho phương trình x2 + bx + 2 = 0 có nghiệm nguyên" thì C = {3}, vì vậy
P(C) = .
Phương trình tiếp tuyến của đồ thị (C) của hàm số y = f(x) tại điểm Mo (xo;f(xo )) có dạng : y = f’(xo)(x – xo) + yo, trong đó yo = f(xo).
Tìm 2 giá trị của x để hàm \(f\left(x\right)\) nhận kết quả trái dấu là được.
a.
Đặt \(f\left(x\right)=\left(1-m^2\right)x^3-6x-1\)
Hàm \(f\left(x\right)\) là hàm đa thức nên liên tục trên R
\(f\left(0\right)=-1< 0\) (chọn \(x=0\) do nó làm triệt tiêu tham số m, thường sẽ ưu tiên chọn những giá trị x kiểu thế này. Ở câu này, có đúng 1 giá trị x khiến m triệt tiêu nên phải chọn thêm)
\(f\left(-1\right)=m^2-1+6-1=m^2+4>0\) với mọi m (để ý rằng ta đã có \(f\left(0\right)\) âm nên cần chọn x sao cho \(f\left(x\right)\) dương, mà \(-m^2\) nên ta nên chọn x sao cho nó chuyển dấu thành \(m^2\))
\(\Rightarrow f\left(0\right).f\left(-1\right)< 0;\forall m\)
\(\Rightarrow\) Hàm luôn có ít nhất 1 nghiệm thuộc \(\left(-1;0\right)\) với mọi m
Hay với mọi m thì pt luôn luôn có nghiệm
b.
Đặt \(f\left(x\right)=\left(m^2+m+5\right)\left(3-x\right)^{2021}x+x-4\)
\(f\left(x\right)\) là hàm đa thức nên liên tục trên R
\(f\left(0\right)=-4< 0\)
(Tới đây, nếu ta chọn tiếp \(x=3\) để triệt tiêu m thì cho \(f\left(3\right)=-1\) vẫn âm, ko giải quyết được vấn đề, nên ta phải chọn 1 giá trị khác. Thường trong những trường hợp xuất hiện \(m^2\) thế này, cố gắng chọn x sao cho hệ số của \(m^2\) dương (nếu cần \(f\left(x\right)\) dương, còn cần \(f\left(x\right)\) âm thì chọn x sao cho hệ số \(m^2\) âm). Ở đây dễ nhất là chọn \(x=2\) , vì khi đó \(\left(3-2\right)^{2021}=1\) vừa đảm bảo hệ số \(m^2\) dương vừa dễ tính toán, nếu chọn \(x=1\) cũng được thôi nhưng quá to sẽ rất khó biến đổi)
\(f\left(2\right)=\left(m^2+m+5\right).\left(3-2\right)^{2021}.2+2-4=2\left(m^2+m+5\right)-2\)
\(=2m^2+2m+8=2\left(m+\dfrac{1}{2}\right)^2+\dfrac{15}{2}>0;\forall m\)
\(\Rightarrow f\left(0\right).f\left(2\right)< 0;\forall m\Rightarrow\) hàm luôn có ít nhất 1 nghiệm thuộc \(\left(0;2\right)\) với mọi m
Hay pt đã cho luôn có nghiệm với mọi m