K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Số tiền giảm đi là:

\(55000000\cdot5=275000000\left(đồng\right)\)

Giá tiền còn lại của chiếc xe sau 5 năm sử dụng là:

\(680000000-275000000=405000000\left(đồng\right)\)

29 tháng 10 2023

Giá còn lại của chiếc xe sau 5 năm sử dụng là:

\(680000000-55000000\cdot5=405000000\left(đồng\right)\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)    Công thức tính giá trị của ô tô:

-        Sau 1 năm: \(800 - 800.4\%  = 768\) (triệu đồng)

-        Sau 2 năm: \(768 - 768.4\%  = 737,28\) (triệu đồng)

b)    Công thức tính giá trị của ô tô sau n năm sử dụng: \({S_n} = 800{\left( {1 - 0,04} \right)^n}\)

c)    Sau 10 năm, giá trị của ô tô ước tính còn: \({S_{10}} = 800{\left( {1 - 0,04} \right)^{10}} \approx 531,87\) (triệu đồng)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có: \({u_1} = 3,\;q = 1- 0,2 = 0,8\).

Giá trị của máy ủi sau n năm là: \({u_n} = 3 \times {0,8^{n - 1}}\)

Vậy sau 5 năm sử dụng giá trị của máy ủi là: \({u_5} = 3 \times {0,8^{5 - 1}} = 1,2288\) (tỷ đồng)

18 tháng 8 2023

a)

$P(2) = 500 \left(\frac{1}{2}\right)^{\frac{2}{3}}$

$P(2.25) = 500 \left(\frac{1}{2}\right)^{\frac{2.25}{3}}$

b)

$P(1) = 500 \left(\frac{1}{2}\right)^{\frac{1}{3}}$

Phần trăm giá trị còn lại so với ban đầu sau 1 năm là: `\frac{P(1)}{500} \times 100%=79%`

Lạm phát là sự tăng mức giá chung một cách liên tục của hàng hoá và dịch vụ theo thời gian, tức là sự mất giá trị của một loại tiền tệ nào đó. Chẳng hạn, nếu lạm phát là \(5\% \) một năm thì sức mua của 1 triệu đồng sau một năm chỉ còn là 950 nghìn đồng (vì đã giảm mất \(5\% \) của 1 triệu đồng, tức là 50000 đồng). Nói chung, nếu tỉ lệ lạm phát trung bình là \(r\% \) một năm...
Đọc tiếp

Lạm phát là sự tăng mức giá chung một cách liên tục của hàng hoá và dịch vụ theo thời gian, tức là sự mất giá trị của một loại tiền tệ nào đó. Chẳng hạn, nếu lạm phát là \(5\% \) một năm thì sức mua của 1 triệu đồng sau một năm chỉ còn là 950 nghìn đồng (vì đã giảm mất \(5\% \) của 1 triệu đồng, tức là 50000 đồng). Nói chung, nếu tỉ lệ lạm phát trung bình là \(r\% \) một năm thì tổng số tiền \(P\) ban đầu, sau \(n\) năm số tiền đó chỉ còn giá trị là

\(A = P \cdot {\left( {1 - \frac{r}{{100}}} \right)^n}\)

a) Nếu tỉ lệ lạm phát 8% một năm thì sức mua của 100 triệu đồng sau hai năm sẽ còn lại bao nhiêu?

b) Nếu sức mua của 100 triệu đồng sau hai năm chỉ còn là 90 triệu đồng thì tỉ lệ lạm phát trung bình của hai năm đó là bao nhiêu?

c) Nếu tỉ lệ lạm phát là 5% một năm thì sau bao nhiêu năm sức mua của số tiền ban đầu chỉ còn lại một nửa?

 

1
HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

a, Nếu tỉ lệ lạm phát 8% một năm thì sức mua của 100 triệu đồng sau hai năm sẽ còn lại

\(A=100\cdot\left(1-\dfrac{8}{100}\right)^2=84,64\) (triệu đồng) 

b, Nếu sức mua của 100 triệu đồng sau hai năm chỉ còn là 90 triệu đồng thì 

\(90=100\cdot\left(1-\dfrac{r}{100}\right)^2\Leftrightarrow\left(1-\dfrac{r}{100}\right)^2=0,9\Leftrightarrow r\approx5,13\)

Vậy nếu sức mua của 100 triệu đồng sau hai năm chỉ còn là 90 triệu đồng thì tỉ lệ lạm phát trung bình của hai năm đó là khoảng 5,13%.
c) Nếu tỉ lệ lạm phát là 5% một năm và sức mua của số tiền ban đầu chỉ còn lại một nửa ta có
\(\dfrac{P}{2}=P\cdot\left(1-\dfrac{5}{100}\right)^n\Leftrightarrow\left(\dfrac{19}{20}\right)^n=\dfrac{1}{2}\\ \Leftrightarrow n=log_{\dfrac{19}{20}}\left(\dfrac{1}{2}\right)\approx13,51\)

Vậy nếu tỉ lệ lạm phát là 5% một năm thì sau 14 năm sức mua của số tiền ban đầu chỉ còn lại một nửa.
 

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Có \(7! = 5040\) cách sắp xếp 7 bạn ngồi vào 7 chiếc ghế \( \Rightarrow n\left( \Omega \right) = 5040\)

Gọi \(A\) là biến cố: “Bình vẫn ngồi đúng ghế cũ của mình”, \(B\) là biến cố “Minh vẫn ngồi đúng ghế cũ của mình”.

Vậy \(AB\) là biến cố “Cả Bình và Minh vẫn ngồi đúng ghế cũ của mình”, \(A \cup B\) là biến cố “Có ít nhất một trong hai bạn Bình và Minh vẫn ngồi đúng ghế cũ của mình”.

Xếp chỗ cho Bình ngồi đúng ghế cũ của mình có 1 cách.

Xếp chỗ cho 6 bạn còn lại có \(6! = 720\) cách.

\( \Rightarrow n\left( A \right) = 1.720 = 720 \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{720}}{{5040}} = \frac{1}{7}\)

Xếp chỗ cho Minh ngồi đúng ghế cũ của mình có 1 cách.

Xếp chỗ cho 6 bạn còn lại có \(6! = 720\) cách.

\( \Rightarrow n\left( B \right) = 1.720 = 720 \Rightarrow P\left( B \right) = \frac{{n\left( B \right)}}{{n\left(\Omega \right)}} = \frac{{720}}{{5040}} = \frac{1}{7}\)

Xếp chỗ cho cả Bình và Minh ngồi đúng ghế cũ của mình có 1 cách.

Xếp chỗ cho 5 bạn còn lại có \(5! = 120\) cách.

\( \Rightarrow n\left( {AB} \right) = 1.120 = 120 \Rightarrow P\left( {AB} \right) = \frac{{n\left( {AB} \right)}}{{n\left( \Omega \right)}} = \frac{{120}}{{5040}} = \frac{1}{{42}}\)

\( \Rightarrow P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = \frac{1}{7} + \frac{1}{7} - \frac{1}{{42}} = \frac{{11}}{{42}}\)

21 tháng 10 2023

Gọi số tiền bạn Niên phải gửi là x(đồng)(ĐK: x>0)

Tháng thứ nhất bạn Niên nhận được là \(x\cdot\left(1+0.27\%\right)\left(đồng\right)\)

Số tiền nhận được sau 2 tháng là:

\(\left[x\left(1+0.27\%\right)+x\right]\cdot\left(1+0.27\%\right)\)

\(=x\cdot\left(1+0.27\%\right)^2+x\cdot\left(1+0.27\%\right)\)

Theo đề, ta có:

\(x\cdot\left(1+0.27\%\right)^{12}+x\cdot\left(1+0.27\%\right)^{11}+...+x\cdot\left(1+0.27\%\right)=20000000\)

=>\(x\cdot\left(1+0.27\%\right)\cdot\left[\left(1+0.27\%\right)^{11}+\left(1+0.27\%\right)^{10}+...+1\right]=20000000\)

=>\(x\cdot\left(1+0.27\%\right)\cdot\dfrac{1-\left(1+0.27\%\right)^{11}}{1-\left(1+0.27\%\right)}=20000000\)

=>\(x\simeq1788939\)(đồng)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Hàm số \(C\left( x \right)\) có tập xác định là nửa khoảng \(\left( {0;24} \right]\).

Hàm số \(C\left( x \right)\) xác định trên từng khoảng \(\left( {0;2} \right),\left( {2;4} \right)\) và \(\left( {4;24} \right)\) nên hàm số liên tục trên các khoảng đó.

Ta có: \(C\left( 2 \right) = 60000\)

\(\begin{array}{l}\mathop {\lim }\limits_{x \to {2^ + }} C\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} 100000 = 100000\\\mathop {\lim }\limits_{x \to {2^ - }} C\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} 60000 = 60000\end{array}\)

Vì \(\mathop {\lim }\limits_{x \to {2^ + }} C\left( x \right) \ne \mathop {\lim }\limits_{x \to {2^ - }} C\left( x \right)\) nên không tồn tại \(\mathop {\lim }\limits_{x \to 2} C\left( x \right)\).

Vậy hàm số \(C\left( x \right)\) không liên tục tại điểm \({x_0} = 2\).

Ta có: \(C\left( 4 \right) = 100000\)

\(\begin{array}{l}\mathop {\lim }\limits_{x \to {4^ + }} C\left( x \right) = \mathop {\lim }\limits_{x \to {4^ + }} 200000 = 200000\\\mathop {\lim }\limits_{x \to {4^ - }} C\left( x \right) = \mathop {\lim }\limits_{x \to {4^ - }} 100000 = 100000\end{array}\)

Vì \(\mathop {\lim }\limits_{x \to {4^ + }} C\left( x \right) \ne \mathop {\lim }\limits_{x \to {4^ - }} C\left( x \right)\) nên không tồn tại \(\mathop {\lim }\limits_{x \to 4} C\left( x \right)\).

Vậy hàm số \(C\left( x \right)\) không liên tục tại điểm \({x_0} = 4\).

Ta có: \(C\left( {24} \right) = 200000\)

\(\mathop {\lim }\limits_{x \to {{24}^ - }} C\left( x \right) = \mathop {\lim }\limits_{x \to {{24}^ - }} 200000 = 200000 = C\left( {24} \right)\)

Vậy hàm số \(C\left( x \right)\) liên tục trái tại điểm \({x_0} = 24\).

Vậy hàm số \(C\left( x \right)\) liên tục trên các khoảng \(\left( {0;2} \right),\left( {2;4} \right)\) và nửa khoảng \(\left( {4;24} \right]\).