Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(m^2-4m+3=\left(m-1\right)\left(m-3\right)\)
\(m^2-m=m\left(m-1\right)\)
\(\left(m^2-4m+3\right)x< m^2-m\Leftrightarrow\left(m-1\right)\left(m-3\right)x< m\left(m-1\right)\)(1)
+) TH1: (m-1)(m-3)=0 <=> \(\orbr{\begin{cases}m-1=0\\m-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}m=1\\m=3\end{cases}}}\)
Với m=1 thay vào (1): 0x<0 Vô lí
=> m=1, bất phương trình (1) vô nghiệm
Với m=3 thay vào (1), ta có: 0x<6 ( luôn đúng)
=> m=3, bất phương trình (1) có nghiệm với mọi x
+)TH2: \(\left(m-1\right).\left(m-3\right)>0\Leftrightarrow\orbr{\begin{cases}m>1\\m< 3\end{cases}}\)
(1) có nghiệm : \(x< \frac{m}{m-3}\)
+) TH3: 1<m<3
(1) có nghiệm :: \(x>\frac{m}{m-3}\)
Từ các trường hợp trên: Để bất phương trình có nghiệm đúng với mọi x : m=3
cần m^2 -4m +3 =0 => m=1 hoặc m=3
với m =1 => <0=> loiaj
với m=3 có -3 <0 đúng nhận
Khi m = 0 phương trình trở thành 4 x 2 = 4 nhận x = 1 và x = -1 là nghiệm. Vì thay x = 1 và x = -1 thì VT = VP = 4.
ẩn x tham số m
\(\Leftrightarrow\left[\left(m^2-m-1\right)-\left(3-m\right)\right]x>5m\)
\(\Leftrightarrow\left(m^2-4\right)x>5m\)
\(m=2;\Leftrightarrow0.x>5.2=>vo.N_0\)
\(m=-2\Leftrightarrow0.x>-10;N_0\forall\in R\)
\(\left|m\right|< 2\Leftrightarrow x< \dfrac{5m}{m^2-4}\)
\(\left|m\right|>2\Leftrightarrow x>\dfrac{5m}{m^2-4}\)