K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2018

ẩn x tham số m

\(\Leftrightarrow\left[\left(m^2-m-1\right)-\left(3-m\right)\right]x>5m\)

\(\Leftrightarrow\left(m^2-4\right)x>5m\)

\(m=2;\Leftrightarrow0.x>5.2=>vo.N_0\)

\(m=-2\Leftrightarrow0.x>-10;N_0\forall\in R\)

\(\left|m\right|< 2\Leftrightarrow x< \dfrac{5m}{m^2-4}\)

\(\left|m\right|>2\Leftrightarrow x>\dfrac{5m}{m^2-4}\)

a: \(\Leftrightarrow m^2-6m+9-m^2+6m>0\)

=>9>0(luôn đúng)

b: \(\Rightarrow25m^2+20m+5m+4>25m^2+25m\)

=>4>0(luôn đúng)

12 tháng 2 2019

Nguyễn TrươngTruong Viet TruongAkai HarumaMysterious Person Mashiro Shiina

12 tháng 2 2019

thay x=2 vào PT ta được:

4(m2-1)+2(m-1)-3m2+m=0<=>m2+3m-6=0

<=>\(\left[{}\begin{matrix}x=\dfrac{-3+\sqrt{33}}{2}\\x=\dfrac{-3-\sqrt{33}}{2}\end{matrix}\right.\)

28 tháng 5 2017

a, \(2mx-m^2\ge2x-2m+1\Leftrightarrow2x\left(m-1\right)\ge\left(m-1\right)^2\)

Nếu \(m-1\ge0\Leftrightarrow m\ge1\)thì

\(\Leftrightarrow2x\ge m-1\Leftrightarrow x\ge\frac{m-1}{2}\)

Nếu \(m< 1\)thì :

\(\Leftrightarrow2x\le m-1\Leftrightarrow x\le\frac{m-1}{2}\)

b,\(\Leftrightarrow2m-mx+m^2-2m+1>2x+5\Leftrightarrow m^2-4>\left(m+2\right)x\)

Nếu \(\left(m-2\right)\left(m+2\right)\ge0\Leftrightarrow\orbr{\begin{cases}m\le-2\\m\ge2\end{cases}}\)thì

\(\Leftrightarrow x< m-2\)

Nếu \(m^2-4< 0\Leftrightarrow-2< m< 2\)thì

\(\Leftrightarrow x>m-2\)

c, \(\Leftrightarrow\left(m^2-m-1-3+m\right)x>5m\)

\(\Leftrightarrow\left(m^2-4\right)x>5m\)

Nếu \(m^2-4\ge0\Leftrightarrow\orbr{\begin{cases}m\le-2\\m\ge2\end{cases}}\)thì

\(x>\frac{5m}{m^2-4}\)

Nếu \(m^2-4< 0\Leftrightarrow-2< m< 2\)thì

\(x< \frac{5m}{m^2-4}\)

20 tháng 4 2019

Bài 2 :

a, \(\frac{1-5x}{x-1}\ge1\)

\(\Leftrightarrow\frac{1-5x}{x-1}\ge\frac{x-1}{x-1}\)

\(\Rightarrow1-5x\ge x-1\)

\(\Leftrightarrow-5x-x\ge-1-1\)

\(\Leftrightarrow-6x\ge-2\)

\(\Leftrightarrow x\le\frac{1}{3}\)

Vậy nghiệm của bất phương trình là \(x\le\frac{1}{3}\).

b, \(\frac{x}{x-2}-\frac{2}{x-3}>1\)

\(\Leftrightarrow\frac{x^2-3x}{x^2-5x+6}-\frac{2x-4}{x^2-5x+6}>\frac{x^2-5x+6}{x^2-5x+6}\)

\(\Rightarrow x^2-3x-2x+4>x^2-5x+6\)

\(\Leftrightarrow x^2-3x-2x-x^2+5x>6-4\)

\(\Leftrightarrow0>2\) ( vô lí )

Vậy bất phương trình vô nghiệm.

20 tháng 4 2019

Bài 1:

a, \(x^2-8x< 0\)

\(\Leftrightarrow x\left(x-8\right)< 0\)

\(\Leftrightarrow x< 0\) hoặc \(x-8< 0\)

\(\Leftrightarrow x< 0\) hoặc \(x< 8\)

Vậy nghiệm của bất phương trình : x<0 ; x<8

b, \(x^2< 6x-5\)

\(\Leftrightarrow x^2-6x+5< 0\)

\(\Leftrightarrow x^2-x-5x+5< 0\)

\(\Leftrightarrow x\left(x-1\right)-5\left(x-1\right)< 0\)

\(\Leftrightarrow\left(x-1\right)\left(x-5\right)< 0\)

\(\Leftrightarrow\) \(x-1< \) 0 hoặc \(x-5< 0\)

\(\Leftrightarrow x< 1\) hoặc \(x< 5\)

Vậy bất phương trình có nghiệm là x<1 ; x<5

18 tháng 5 2017

a)m(2x-m)\(\ge\)2(x-m)+1

<=>2mx-m2-2x+2m-1\(\ge\)0

<=>2(m-1)x-m2+2m-1\(\ge\)0

*)m=1 BPT trở thành

0.x-1+2-1\(\ge\)0

<=>0\(\ge\)0(đúng)

*)m khác 1

=>2(m-1)x-(m-1)2\(\ge\)0

<=>2(m-1)x\(\ge\)(m-1)2

<=>x\(\ge\)\(\dfrac{m-1}{2}\)

Vậy m =1 thì BPT nghiệm đúng với mọi x

m khác 1 thì x\(\ge\)\(\dfrac{m-1}{2}\)

b)m(2-x)+(m-1)2>2x+5

<=>2m-mx+m2-2m+1-2x-5>0

<=>-(m+2)x+m2-4>0

<=>-(m+2)x>-(m-2)(m+2)

<=>(m+2)x<(m-2)(m+2)

*)Nếu m=-2 BPT trở thành

0.x<0

<=>0<0(vô lí)

*)Nếu m khác -2

BPT tương đương x<m-2

Vậy m=-2 BPT vô nghiệm

m khác -2 thì x<m-2

19 tháng 3 2020

Ta có: (x-1)(x+1)-(x+2)2=3

<=> x2-1-x2-4x-4=0

<=> -4x=8

<=> x=-2

Để phương trình 6x-5=3+3mx có nghiệm gấp 3 lần phương trình (x+1)(x-1)-(x+2)2=3 hay x=-6

Ta có:

6 x (-6)-5m=3+3m(-6)

<=> -5m+18m=39

<=> 13m=39

<=. m=3

Vậy với m=3 thì phương trình 6x-5=3+3mx có nghiệm gấp 3 lần phương trình (x+1)(x-1)-(x+2)2=3

13 tháng 1 2017

Ta có:

\(\left(x+1\right)\left(x-1\right)-\left(x+2\right)^2=3\)

\(\Leftrightarrow4x+8=0\Leftrightarrow x=2\)

Ta lại có

\(6x-5m=3+3mx\)

\(\Leftrightarrow x\left(6-3m\right)=3+5m\)

\(\Leftrightarrow x=\frac{3+5m}{6-3m}\)

Vì pt này có nghiệm gấp 3 lần pt trên nên

\(\frac{3+5m}{6-3m}=6\)

\(\Leftrightarrow23m=33\Leftrightarrow m=\frac{33}{23}\)