Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Gọi M là đỉnh của hình lập phương có cạnh bằng 1 nằm trên đường chéo AC’ và nằm trên khối còn lại sau khi cắt. Gọi I là tâm của khối cầu có thể tích lớn nhất thỏa mãn yêu cầu bài toán.
Ta có d I ; A ' B ' C ' D ' = d I ; B C C ' B ' = d I ; D C C ' D '
Suy ra I thuộc đoạn thẳng C’M và mặt cầu tâm I cần tìm đi qua điểm M.
Đặt d I ; D C C ' D ' = a , ta có IC' = a 3 mà A C ' = 3 3 , A M = 3
Suy ra I M = 2 3 - a 3 mặt khác d I ; D C C ' D ' = I M ⇔ a = 2 3 - a 3 ⇒ a = 3 - 3 3
Để ý rằng đường chéo của hình lập phương chính là đường kính của khối cầu. Mặt khác ta lại có công thức: “Bình phương độ dài đường chéo của hình lập phương bằng ba lần bình phương của độ dài cạnh hình lập phương”. Khi đó 2 R 2 = 3 a 2 ⇒ a = 2 R 3 3
Suy ra V 1 = 2 3 3 R 3 = 8 3 9 R 3 .
Vì khối cầu có bán kính R nên ta có thể tính được bán kính và chiều cao của khối trụ ngoại tiếp ngoài khối cầu lần lượt là R và 2R.
Do đó V 2 = πR 2 . 2 = 2 πR 3
Vậy ta có tỉ số V 1 V 2 = 8 3 9 R 3 2 πR 3 = 4 3 9 π ≈ 0 , 245
Đáp án C
Đáp án C
Mặt cầu (S) chính là mặt cầu nội tiếp hình lập phương cạnh a ⇒ R = a 2 .
Vậy thể tích khối cầu (S) là V = 4 3 π R 3 = 4 3 π . a 2 3 = π a 3 6 .
Chọn D