Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left\{{}\begin{matrix}a-b=x\\b-c=y\\c-a=z\end{matrix}\right.\)thì \(x+y+z=0\).Ngoài ra còn suy ra được:
\(\left\{{}\begin{matrix}x+y=-z\\y+z-x\\x+z=-y\end{matrix}\right.\)
Xét \(A=x^4+y^4+z^4\)
Khai triển Newton để có được :
\(\left(x+y+z\right)^4=\sum x^4+4\sum xy\left(x^2+y^2\right)+12xyz\left(x+y+z\right)+6\sum x^2y^2\)
Vì x+y+z=0 nên \(\sum x^4=x^4+y^4+z^4=-4\sum xy\left(x^2+y^2\right)-6\sum x^2y^2\)
Mà \(-4\sum xy\left(x^2+y^2\right)=-4\sum xy\left[\left(x+y\right)^2-2xy\right]=-4\sum xyz^2+8\sum x^2y^2\)(*)
\(\Rightarrow x^4+y^4+z^4=2\sum x^2y^2-4\sum xyz^2\)
\(=2\left(x^2y^2+y^2z^2+z^2x^2-2xyz^2-2xy^2z-2x^2yz\right)\)
( hm ,có biến ? )
Thực ra từ chỗ (*) thì z ( hoặc x hay y) chưa biết dương hay âm nên có thể đổi thành - z2
Khi đó \(A=2\left(xz+yz-xy\right)^2\)
\(\Rightarrow Bt=\sqrt{2A}=2\left|xz+yz-xy\right|\in Q\)
Câu hỏi đặt ra: liệu có luôn biến đổi được như vậy ? trong trường hợp cả 3 số > 0 thì sao ? Câu trả lời là có.Bởi Vì x+y+z=0 nên phải có ít nhất 1 số khác dấu với 2 số còn lại ( hay dựa vào x+y=-z )
Bài 6: Gọi đồ thị hàm số y=ax+b là (d)
a)
Vì (d) đi qua A(0;2) nên 2=0x+b hay b=2 (1)
Vì (d) đi qua B(1;-3) nên -3=a+b (2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{\begin{matrix}b=2\\a+b=-3\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}a=-5\\b=2\end{matrix}\right.\)
Vậy: đồ thị hàm số cần tìm là y=-5x+2
b)
Vì (d) đi qua C(-5;3) nên 3=-5a+b (1)
Vì (d) đi qua D(\(\frac{3}{2}\);-1) nên -1=\(\frac{3}{2}\)a+b (2)
Từ (1), (2) ta có hệ phương trình:
\(\left\{\begin{matrix}-5a+b=3\\\frac{3}{2}a+b=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{\begin{matrix}a=-\frac{8}{13}\\b=-\frac{1}{13}\end{matrix}\right.\)
Vậy đồ thị hàm số cần tìm là y=\(-\frac{8}{13}\)x\(-\frac{1}{3}\)
Bạn đúng là 1 người tốt bụng , quan tâm tới bạn bè , chắc chắn mọi điều tốt sẽ đến vs bạn
Mặc dù mk ko bt bạn Hạ Thì là aiNNhưng mk chúc mừng sinh nhật bạn ấy
Lời giải:
Áp dụng BĐT AM-GM:
\((2a+b+c)^2=a^2+(a+b+c)^2+2a(a+b+c)=a^2+\frac{(a+b+c)^2}{9}+\frac{8(a+b+c)^2}{9}+2a(a+b+c)\)
\(\geq \frac{2a(a+b+c)}{3}+\frac{8(a+b+c)^2}{9}+2a(a+b+c)=\frac{8(a+b+c)^2}{9}+\frac{8a(a+b+c)}{3}\)
Suy ra \(\frac{1}{(2a+b+c)^2}\leq \frac{9}{8(a+b+c)(4a+b+c)}\Rightarrow \sum \frac{1}{(2a+b+c)^2}\leq \frac{9}{8(a+b+c)}\sum \frac{1}{4a+b+c}\)
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{4a+b+c}\leq \frac{1}{36}\left (\frac{1}{a}+\frac{1}{a}+\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{36}\left (\frac{4}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow \sum \frac{1}{4a+b+c}\leq \frac{1}{6}\left (\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Do đó \(\sum \frac{1}{(2a+b+c)^2}\leq \frac{9}{8(a+b+c)}\sum \frac{1}{4a+b+c}\leq \frac{9}{8(a+b+c)}.\frac{1}{6}\left (\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{9}{8}.\frac{1}{6}=\frac{3}{16}\)
Ta có đpcm
Dấu bằng xảy ra khi \(a=b=c=1\)
BĐT\(\Leftrightarrow\left(x^2+y^2\right)^3\le2\left(x^3+y^3\right)^2\)( đúng theo BĐT holder)
Hay AM-GM:
\(\dfrac{x^3}{x^3+y^3}+\dfrac{x^3}{x^3+y^3}+\dfrac{1}{2}\ge3\sqrt[3]{\dfrac{x^6}{2\left(x^3+y^3\right)^2}}=\dfrac{3x^2}{\sqrt[3]{2\left(x^3+y^3\right)^2}}\)
\(\dfrac{y^3}{x^3+y^3}+\dfrac{y^3}{x^3+y^3}+\dfrac{1}{2}\ge\dfrac{3y^2}{\sqrt[3]{2\left(x^3+y^3\right)^2}}\)
Cộng theo vế:
\(3\ge\dfrac{3\left(x^2+y^2\right)}{\sqrt[3]{2\left(x^3+y^3\right)^2}}\Leftrightarrow2\left(x^3+y^3\right)^2\ge\left(x^2+y^2\right)^3\)
Dấu = xảy ra khi x=y
Lời giải:
BĐT cần chứng minh tương đương với:
\(2(x^3+y^3)^2\geq (x^2+y^2)^3\)
Áp dụng BĐT Cauchy-Schwarz:
\((x^3+y^3)(x+y)\geq (x^2+y^2)^2\Rightarrow x^3+y^3\geq \frac{(x^2+y^2)^2}{(x+y)}\)
\(\Leftrightarrow 2(x^3+y^3)^2\geq \frac{2(x^2+y^2)^4}{(x+y)^2}\)
Theo BĐT Am-Gm:
\((x+y)^2\leq 2(x^2+y^2)\Rightarrow 2(x^3+y^3)^2\geq \frac{2(x^2+y^2)^4}{2(x^2+y^2)}=(x^2+y^2)^3\)
Ta có đpcm.
Dấu bằng xảy ra khi \(x=y\)