Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a-b)^2 + (b-c)^2 + (c-a)^2 = 4(a^2 +b^2 + c^2 -ab -bc-ca)
<=>a^2 -2ab +b^2 + b^2- 2bc +c^2+ c^2 -2ca+a^2= 4(a^2+b^2+c^2-ab-ac-bc)
<=>2(a^2+b^2+c^2-ab-bc-ac)=4(a^2+b^2+c^2-ab-ac-bc)
<=>2(a^2+b^2+c^2-ab-bc-ac)=0
<=>2a^2+2b^2 +2c^2-2ac-2bc-2ab=0
<=>(a-b)^2+(b-c)^2+(c-a)^2=0
Mà (a-b)^2 >=0; (b-c)^2 >=0 ;(c-a)^2 >=0
Suy ra: a-b=0; b-c=0; c-a=0
=>a=b; b=c;a=c
Vậy a=b=c
Phân tích vế phải : 4(a2+b2+c2 -ab-bc-ca) = 4a2+4b2+4c2-4ab-4bc-4ca = 2[(a2 -2ab +b2) + (b2 -2bc +c2) + (c2 -2ca +a2)] + 2(a2+b2+c2) = 2[(a-b)2 + (b-c)2 + (c-a)2] + 2(a2 + b2 +c2) => (a-b)2 + (b-c)2 + (c-a)2 = 2[(a-b)2 + (b-c)2 + (c-a)2] + 2(a2 + b2 + c2) => 2[(a-b)2 + (b-c)2 + (c-a)2] + 2(a2+ b2 + c2) - [(a-b)2 + (b-c)2 + (c-a)2] = 0 => (a-b)2 + (b-c)2 + (c-a)2 + 2(a2 + b2 +c2) = 0 Vì vế trái của đẳng thức trên luôn lớn hơn hoặc bằng 0 => a = b = c (đpcm)
A=\(\left(x^2-2xy+y^2\right)-z^2\)
=\(\left(x-y\right)^2-z^2\)
=\(\left(x-y-z\right)\left(x-y+z\right)\)
Kiểm tra mà bạn vẫn có thời gian đưa câu hỏi ư! Bái phục mà thi j vậy bn?
\(x^2-6x+9-4y^2\)
\(=\left(x-3\right)^2-\left(2y\right)^2\)
\(=\left(x-3-2y\right)\left(x-3+2y\right)\)
x2 - 6x + 9 - 4y2
= (x - 3)2 - 4y
= (x - 3)2 - (2y)2
= [(x - 3) + 2y][(x - 3) - 2y]
= (x - 3 + 2y)(x - 3 - 2y)
Ta có: \(\frac{1}{x\left(x+1\right)}=\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{x}-\frac{1}{x+1}\)
tương tự, ta được
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+19\right)\left(x+20\right)}\\ =\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+19}-\frac{1}{x+20}\\ =\frac{1}{x}-\frac{1}{x+20}\\ =\frac{x+20-x}{x\left(x+20\right)}=\frac{20}{x\left(x+20\right)}\)
Thay x=1 vào BT ta được :
A=\(\frac{20}{1\left(1+20\right)}=\frac{20}{21}\)
thi tốt nhé
\(-\frac{20}{21}\)