Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =xy(x^2-4xy^2+4y^4)
=xy(x-2y^2)^2
b:=(x^3-y)^2
c: =(a^2-b^2)(a^2+b^2)
=(a^2+b^2)(a-b)(a+b)
d: 64x^6-27y^6
=(4x^2-3y^2)(16x^4+12x^2y^2+9y^4)
e: =(2x)^3+(3y)^3
=(2x+3y)(4x^2-6xy+9y^2)
Ta thấy \(8x^3+27y^3\)
\(=\left(2x\right)^3+\left(3y\right)^3\)
\(=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)
\(=4x^2-6xy+9y^2\)
Thế thì \(A=6x^2-6xy+18y^2+5\)
Rồi lại thay \(x=\dfrac{1-3y}{2}\) vào A thôi.
a)(x+3y)(x2-3xy+9y2)=x3+27y3
b)(2x-3y)(4x2+6xy+9y2)=8x3-27y3
a) (1 - 2x) (2x + 1) = 1 - 4x2 __ hằng đẳng thức số 3 (A + B) (A - B) = A2 - B2 (ở đây A = 1 , B = 2x)
câu b) có sai đề ko bn
\(8x^6-27y^3\)
\(=\left(2x^2\right)^3-\left(3y\right)^3\)
\(=\left(2x^2-3y\right)\left(4x^2+6x^2y+9y^2\right)\)
8x3 - 27y3 = 23 . x3 - 33 . y3 = ( 2x )3 - ( 3y )3 = ( 2x - 3y ) [(2x)2 + 12xy + (3y)2 ].
\(M=8x^3+27y^3+4x^2+9y^2+5\)
\(=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)+4x^2+9y^2+5\)
\(=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)+4x^2+9y^2+5\)
\(=4x^2-6xy+9y^2+4x^2+9y^2+5\)
Áp dụng BĐT AM-GM có:
\(1\ge2.\sqrt{6xy}\)
\(\Leftrightarrow xy\le\frac{1}{24}\)
Dấu " = " xảy ra <=> 2x=3y <=> x=0,25 y=1/6
Áp dụng BĐT Cauchy-schwarz ta có:
\(M\ge\frac{2.\left(2x+3y\right)^2}{2}-6xy+5\ge\frac{2}{2}-\frac{6.1}{24}+5=6.25\)
Dấu " = " xảy ra <=> 2x=3y <=> x=0,25 y=1/6
KL:.....................................................................
\(1.\)
\(a.\)
\(\left(x-3\right)\left(x^2+3x+9\right)-\left(54+x^3\right)\)
\(=\left(x^3-3^3\right)-\left(54+x^3\right)\)
\(=x^3-27-54-x^3\)
\(=-81\)
\(b.\)
\(\left(3x+y\right)\left(9x^2-3xy+y^2\right)-\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)
\(=\left(27x^3+y^3\right)-\left(27x^3-y^3\right)\)
\(=27x^3+y^3-27x^3+y^3\)
\(=2y^3\)
\(2.\)
\(a.\)
\(\left(x+3y\right)\left(x^2-3xy+9y^2\right)=x^3+27y^3\)
\(b.\)
\(\left(2x-3y\right)\left(4x^2+6xy+9y^3\right)=8x^3-27y^3\)
1) a) \(\left(x-3\right)\left(x^2+3x+9\right)-\left(54+x^3\right)\)
\(=\left(x^3-3^3\right)-\left(54+x^3\right)\\ =\left(x^3-27\right)-54-x^3\\ =-27-54\\ =-81\)
b) \(\left(3x+y\right)\left(9x^2-3xy+y^2\right)-\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)
\(=\left[\left(3x\right)^3+y^3\right]-\left[\left(3x\right)^3-y^3\right]\\ =2y^3\)
2) a) \(\left(x+3y\right)\left(x^2-3xy+9y^2\right)=x^3+27y^3\)
b) \(\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)=8x^3-27y^3\)
\(\left(8x^3-27y^3\right):\left(2x-3y\right)\)
\(=\left(2x-3y\right)\left(4x^2+6xy+9y^2\right):\left(2x-3y\right)\)
\(=4x^2+6xy+9y^2\)