K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2018

\(pt\Leftrightarrow\hept{\begin{cases}\frac{1}{2}xy+\frac{3}{2}x+y+3=\frac{1}{2}xy+50\\\frac{1}{2}xy-x-y+2=\frac{1}{2}xy-32\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{3}{2}x+y=47\\-x-y=-34\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=26\\y=8\end{cases}}\)

Vậy pt có một nghiệm duy nhất (x;y) = (26;8).

7 tháng 3 2017

\(\frac{y-1}{y-2}-\frac{5}{y+2}=\frac{12}{y^2-4}+1\)

 \(\frac{\left(y-1\right)\left(y+2\right)}{y^2-4}-\frac{5\left(y-2\right)}{y^2-4}=\frac{12}{y^2-4}+\frac{y^2-4}{y^2-4}\)

\(\frac{y^2+y-2-5y+10}{y^2-4}=\frac{y^2+8}{y^2-4}\)

\(y^2-4y-8=y^2+8\)

 \(y^2-4y-8-y^2-8=0\)

 \(-4y-16=0\)

\(\Rightarrow y=-4\)

            Vậy y=-4

7 tháng 3 2017

\(\Leftrightarrow\frac{y-1}{y-2}-\frac{5}{y+2}=\frac{12}{\left(y-2\right)\left(y+2\right)}+1\)

\(\Leftrightarrow\frac{\left(y-1\right)\left(y+2\right)-5\left(y-2\right)-12+1\left(y-2\right)\left(y+2\right)}{\left(y-2\right)\left(y+2\right)}=0\)

\(\Leftrightarrow\frac{y^2+2y-y-2-5y+10-12+y^2+2y-2y-4}{\left(y-2\right)\left(y+2\right)}\)

Rồi bạn làm tiếp nha

24 tháng 6 2018

a,\(=\left(\frac{3}{5}x+\frac{2}{7}y\right)^2=\left(\frac{3}{5}.5+\frac{2}{7}.\left(-7\right)\right)^2=0\)

\(b,=\left(\frac{5}{4}u^2v+\frac{2}{25}v^2\right)^2=\left(\frac{5}{4}.\left(\frac{2}{5}\right)^2.5+\frac{2}{25}.5^2\right)^2=3^2=9\)

14 tháng 1 2017

a)VP lẻ => VT lẻ =>x2-y2=2k+1 (k\(\in\)Z) (số lẻ)

\(\Rightarrow10y+9=\left(2k+1\right)^2\Rightarrow y=\frac{2\left(k+2\right)\left(k-1\right)}{5}\in Z^+\)

\(\Rightarrow\orbr{\begin{cases}\left(k+2\right)⋮5\Rightarrow k=5t-2\Rightarrow y=2t\left(5t-3\right)\left(1\right)\\\left(k-1\right)⋮5\Rightarrow k=5t+1\Rightarrow y=2t\left(5t+3\right)\left(2\right)\end{cases}}\left(t\in Z^+\right)\)

  • Xét \(\left(1\right)\Rightarrow x^2=\left(10t^2-6t\right)^2+10t-3\)

Mà \(\hept{\begin{cases}\left(10t^2-6t\right)^2< \left(10t^2-6t\right)^2+10t-3< \left(10t^2-6t+1\right)^2\left(\text{khi}\text{ t }\ge1\right)\\\left(10t^2-6t-1\right)^2< \left(10t^2-6t\right)^2+10t-3< \left(10t^2-6t\right)^2\left(\text{khi t}\le-1\right)\\\left(10t^2-6t\right)^2+10t-3=-3< 0\left(\text{khi t}=0\right)\end{cases}}\)

Suy ra pt vô nghiệm

  • Xét (2)\(\Rightarrow x^2=\left(10t^2+6t\right)^2+10t+3\)

Mà \(\left(10t^2+6t\right)^2< \left(10t^2+6t\right)^2+10t+3< \left(10t^2+6t+1\right)^2\left(\text{khi t}\ge1\right)\) (*)

\(\left(10t^2+6t-1\right)^2< \left(10t^2+6t\right)^2+10t+3< \left(10t^2+6t\right)^2\left(\text{khi t}< -1\right)\)(*)

\(\left(10t^2+6t\right)^2+10t+3=3^2\left(\text{khi t}=-1\right)\)(*)

\(1^2< \left(10t^2+6t\right)^2+10t+3=3< 2^2\left(\text{khi t}=0\right)\)(*)

Suy ra \(t=-1;y=4;x=\pm3\) (thỏa mãn)

Vậy....

P/s:Ngoặc nhọn 4 dòng có dấu (*) vào

14 tháng 1 2017

Xin lỗi bạn mình chưa học lớp 8

Trông đề bài khó quá

Mình nghiệp dư lắm

27 tháng 2 2020

bạn là nam hay nữ zở

27 tháng 2 2020

bn nhìn tên rồi đoán nha bn