\(\sqrt{x+2+2\sqrt{x+7}}-\sqrt{x+1}=4\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2017

mọi người jup mình giải đi khó wá

1 bài thui cx đc

28 tháng 9 2017

a) \(x-\sqrt{x^4-2x^2+1}=1\)

\(\Leftrightarrow x-\left(x^2-1\right)=1\)

\(\Leftrightarrow-x^2+x=0\)

\(\Leftrightarrow x\left(-x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\-x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Thử lại chỉ có x = 1 thỏa mãn

Vậy x = 1 là nghiệm pt

b) \(\sqrt{x^2+4x+4}+\left|x-4\right|=0\)

\(\Leftrightarrow\left|x+2\right|+\left|x-4\right|=0\)

\(\Leftrightarrow\) \(\left|x+2\right|=-\left|x-4\right|\)

<=> vô nghiệm (tự gthik nhé)

c) Vì \(\sqrt{x-2}+\sqrt{x-3}\ge0\) mà -5 < 0

=> pt vô nghiệm '-'

P/s: Đề kiểu j mà vô nghiệm hết vậy :)

a: \(\Leftrightarrow\sqrt{2x-1}\left(\sqrt{2x+1}-2\right)=0\)

=>2x-1=0 hoặc 2x+1=4

=>2x=1 hoặc 2x=3

=>x=3/2 hoặc x=1/2

b: \(\Leftrightarrow3x+2=2\left(x+2\right)\)

=>3x+2=2x+4

=>x=2(nhận)

13 tháng 10 2019

a,đk -1<x<7

x+1+2 căn 7-x-2 căn x+1=căn (x+1)(7-x)

9 tháng 2 2020

\(Đkxđ:x\ge0\)

Ta có: Bất phương trình tương đương với:

\(\left(1+\sqrt{x}\right)\left(\frac{1}{\sqrt{x+3}}+\frac{1}{\sqrt{3x+1}}\right)=2\)

Áp dụng BĐT Cô - si ta có:

\(\frac{1}{\sqrt{3x+1}}=\sqrt{\frac{1}{x+1}.\frac{x+1}{3x+1}}\le\frac{1}{2}\left(\frac{1}{x+1}+\frac{x+1}{3x+1}\right)\)

\(\sqrt{\frac{x}{3x+1}}=\sqrt{\frac{1}{2}.\frac{2x}{3x+1}}\le\frac{1}{2}\left(\frac{1}{2}+\frac{2x}{3x+1}\right)\)

\(\Rightarrow\frac{1+\sqrt{x}}{\sqrt{3x+1}}\le\frac{1}{2}\left(\frac{1}{x+1}+\frac{1}{2}+1\right)=\frac{1}{2}\left(\frac{1}{x+1}+\frac{3}{2}\right)\left(1\right)\)

\(\frac{1}{\sqrt{x+3}}=\sqrt{\frac{1}{2}.\frac{2}{x+3}}\le\frac{1}{2}\left(\frac{1}{2}+\frac{2}{x+3}\right)\)

\(\frac{\sqrt{x}}{\sqrt{x+3}}=\sqrt{\frac{x}{x+1}.\frac{x+1}{x+3}}\le\frac{1}{2}\left(\frac{x}{x+1}+\frac{x+1}{x+3}\right)\)

\(\Rightarrow\frac{1+\sqrt{x}}{\sqrt{x+3}}\le\frac{1}{2}\left(\frac{x}{x+1}+\frac{3}{2}\right)\left(2\right)\)

Từ: \(\left(1\right)\left(2\right)\Rightarrow\left(1+\sqrt{x}\right)\left(\frac{1}{\sqrt{x+3}}+\frac{1}{\sqrt{3x+1}}\right)\le\frac{1}{2}\left(\frac{1}{x+1}+\frac{x}{x+1}+3\right)=2\)

Đẳng thức xảy ra \(\Leftrightarrow x=1\)

Vậy nghiệm của pt là \(x=1\)

18 tháng 8 2020

lên hỏi đáp 247 hỏi cho nhanh !