Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x4+2x3-2x2+2x-3=0
=> (x4 - 1) + (2x3-2x2 )+ (2x-2)=0
=> (x - 1).(x+1).(x2 + 1) + 2x2.(x - 1) + 2.(x -1) = 0
=> (x -1). [(x+1).(x2 + 1) + 2x2 + 2] = 0
<=> (x - 1). (x3 + x + x2 + 1 + 2x2 + 2)= 0
<=> (x - 1). (x3 + x + 3x2 + 3)= 0
<=> x - 1 = 0 hoặc x3 + x + 3x2 + 3 = 0
+) x - 1 = 0 => x =1
+) x3 + x + 3x2 + 3 = 0 <=> x. (x2 + 1) + 3.(x2 + 1) = 0
<=> (x+3). (x2 +1) = 0 <=> x + 3 = 0 (vì x2 + 1 > 0 với mọi x)
<=> x = -3
Vậy pt có 2 nghiệm x = 1 ; x = -3
\(\dfrac{5}{x-3}+\dfrac{4}{x+3}=\dfrac{x-5}{x^2-9}\left(ĐKXĐ:x\ne\pm3\right)\\ \Leftrightarrow\dfrac{5\left(x+3\right)+4\left(x-3\right)}{x^2-9}=\dfrac{x-5}{x^2-9}\\ \Leftrightarrow5x+15+4x-12=x-5\\ \Leftrightarrow5x+4x-x=-5-15+12\\ \Leftrightarrow8x=-8\\ \Leftrightarrow x=-1\left(TM\right)\\ Vậy:S=\left\{-1\right\}\)
\(\left(x-3\right)^3-2\left(x-1\right)=x\left(x-2\right)^2-5x^2\)
\(\Leftrightarrow x^3-6x^2+9x-3x^2+18x-27-2x+2=x^3-4x^2+4x-5x^2\)
\(\Leftrightarrow x^3-9x^2+25x-25=x^3-9x^2+4x-5x^2\)
\(\Leftrightarrow x^3-9x^2+25x-25=x^3-9x^2+4x\)
\(\Leftrightarrow-9x^2+25x-25=-9x^2+4x\)
\(\Leftrightarrow25x-25=4x\)
\(\Leftrightarrow-25=4x-25x\)
\(\Leftrightarrow-25=-21x\)
\(\Leftrightarrow x=\frac{21}{25}\)
\(a,\)\(x^2+2x-15=0\Rightarrow\left(x+1\right)^2-16=0\Rightarrow\left(x+1\right)^2=16\)
\(\hept{\begin{cases}x+1=4\\x+1=-4\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\x=-5\end{cases}}\)\(\)vậy \(S=\left\{3;-5\right\}\)
\(b,\)\(2x^2-7x+6=0\Rightarrow2x\left(x-1\right)-5\left(x-1\right)+1=0\)
\(\Rightarrow\left(x-1\right)\left(2x-5\right)=-1=1.-1=-1.1\)
\(x-1=1;2x-5=-1\)và \(x-1=-1;2x-5=1\)
\(\Rightarrow x=2\)và\(x=0;x=3\)vậy \(S=\left\{2;0;3\right\}\)
Mình làm nốt nhé
c) \(x^3-4x^2+5x=x\left(x^2-4x+5\right)=0\)
\(\Leftrightarrow x\left(x^2-4x+4+1\right)=0=x\left[\left(x-2\right)^2+1\right]=0\)
Vì \(\left(x-2\right)^2+1>0\forall x\Leftrightarrow x=0\)
d) \(x^3+5x^2+3x-9=0\Leftrightarrow x^3+3x^2+2x^2+6x-3x-9=0\)
\(\Leftrightarrow x^2\left(x+3\right)+2x\left(x+3\right)-3\left(x+3\right)=\left(x+3\right)\left(x^2+2x-3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left[\left(x+1\right)^2-4\right]=\left(x+3\right)\left(x+1-2\right)\left(x+1+2\right)=0\)
\(\Leftrightarrow\left(x+3\right)^2\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}\left(x+3\right)^2=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=1\end{cases}}}\)
Tự KL