K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2016

-2x+3=2

=>x=0,5

hoặc -2x+3=-2

=>x=2,5

6 tháng 5 2015

 x4+2x3-2x2+2x-3=0

=>  (x4 - 1) + (2x3-2x2 )+ (2x-2)=0

=> (x - 1).(x+1).(x2 + 1) + 2x2.(x - 1) + 2.(x -1) = 0

=> (x -1). [(x+1).(x2 + 1) + 2x2 + 2] = 0

<=> (x - 1). (x3 + x + x2 + 1 + 2x2 + 2)= 0

<=> (x - 1). (x3 + x + 3x2 + 3)= 0

<=> x - 1 = 0 hoặc x3 + x + 3x2 + 3 = 0

+) x - 1 = 0 => x  =1 

+) x3 + x + 3x2 + 3 = 0 <=> x. (x+ 1) + 3.(x2 + 1) = 0

<=> (x+3). (x2 +1) = 0 <=> x + 3 = 0 (vì x2 + 1 > 0 với mọi x)

<=> x = -3

Vậy pt có 2 nghiệm x = 1 ; x = -3

31 tháng 8 2016

X^4+2X^3-X^2+2X+1=0 LAM TN

6 tháng 2 2019

a) \(\left(8x+5\right)^2\left(4x+3\right)\left(2x+1\right)=9\)

\(\Leftrightarrow\left(64x^2+8x+25\right)\left(8x^2+10x+3\right)-9=0\)

Đặt a = \(8x^2+10x+3\)

\(\left(8a+1\right)a-9=0\)

\(\Leftrightarrow8a^2+a-9=0\)

\(\Leftrightarrow\left(a-1\right)\left(8a+9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=1\\a=-\frac{9}{8}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}8x^2+10x+3=1\\8x^2+10x+3=-\frac{9}{8}\end{cases}}\)

mà \(8x^2+10x+3=1\Rightarrow8x^2+10x+2=0\)

\(\Rightarrow2\left(x+1\right)\left(4x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=-1\\x=-0,25\end{cases}}\)

7 tháng 2 2019

cảm ơn bạn còn mấy phần còn lại ạ

29 tháng 7 2015

vậy  2x3-x2+5x+3 = 0  <=> (2x+1).(x- x+ 3) = 0 <=> 2x+1 = 0 hoặc x- x + 3 = 0

+) 2x+1 = 0 <=> x = -1/2

+) x2 - x+ 3 = 0 Vô nghiệm vì x2 - x+ 3  = x2 - 2.x. \(\frac{1}{2}\)+ \(\frac{1}{4}\) + \(\frac{11}{4}\) = (x -  \(\frac{1}{2}\)2 + \(\frac{11}{4}\)> 0 với mọi x

Vậy phương trình có nghiệm x = -1/2

26 tháng 1 2022

\(a,PT\Leftrightarrow\left(x+2\right)\left(3x+5\right)-\left(2x-4\right)\left(x+1\right)=0\)

<=> \(\left(x+2\right)\left(3x+5\right)-2\left(x+2\right)\left(x+1\right)=0\)

<=> \(\left(x+2\right)\left(3x+5-x-1-2\right)=0\)

<=> \(\left(x+2\right)\left(2x-2\right)=0\)

<=> \(\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)

Vậy: ...

\(b,PT\Leftrightarrow\left(2x+5\right)\left(x-4\right)+\left(x-4\right)\left(x+5\right)=0\)

<=> \(\left(x-4\right)\left(2x+4+x+5\right)=0\)

<=> \(\left(x-4\right)\left(3x+9\right)=0\)

<=> \(\orbr{\begin{cases}x=4\\x=-3\end{cases}}\)

Vậy: ...

\(\left(x-3\right)^3-2\left(x-1\right)=x\left(x-2\right)^2-5x^2\)

\(\Leftrightarrow x^3-6x^2+9x-3x^2+18x-27-2x+2=x^3-4x^2+4x-5x^2\)

\(\Leftrightarrow x^3-9x^2+25x-25=x^3-9x^2+4x-5x^2\)

\(\Leftrightarrow x^3-9x^2+25x-25=x^3-9x^2+4x\)

\(\Leftrightarrow-9x^2+25x-25=-9x^2+4x\)

\(\Leftrightarrow25x-25=4x\)

\(\Leftrightarrow-25=4x-25x\)

\(\Leftrightarrow-25=-21x\)

\(\Leftrightarrow x=\frac{21}{25}\)

28 tháng 2 2020

\(Pt\Leftrightarrow x^3-1-3x^2+3x-2x+2-x^3+4x^2-4x+5x^2=0\)

\(\Leftrightarrow6x^2-5x+1=0\)

\(\Leftrightarrow x=\frac{3\pm\sqrt{3}}{6}\)

24 tháng 4 2023

\(\dfrac{5}{x-3}+\dfrac{4}{x+3}=\dfrac{x-5}{x^2-9}\left(ĐKXĐ:x\ne\pm3\right)\\ \Leftrightarrow\dfrac{5\left(x+3\right)+4\left(x-3\right)}{x^2-9}=\dfrac{x-5}{x^2-9}\\ \Leftrightarrow5x+15+4x-12=x-5\\ \Leftrightarrow5x+4x-x=-5-15+12\\ \Leftrightarrow8x=-8\\ \Leftrightarrow x=-1\left(TM\right)\\ Vậy:S=\left\{-1\right\}\)