Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x4+2x3-2x2+2x-3=0
=> (x4 - 1) + (2x3-2x2 )+ (2x-2)=0
=> (x - 1).(x+1).(x2 + 1) + 2x2.(x - 1) + 2.(x -1) = 0
=> (x -1). [(x+1).(x2 + 1) + 2x2 + 2] = 0
<=> (x - 1). (x3 + x + x2 + 1 + 2x2 + 2)= 0
<=> (x - 1). (x3 + x + 3x2 + 3)= 0
<=> x - 1 = 0 hoặc x3 + x + 3x2 + 3 = 0
+) x - 1 = 0 => x =1
+) x3 + x + 3x2 + 3 = 0 <=> x. (x2 + 1) + 3.(x2 + 1) = 0
<=> (x+3). (x2 +1) = 0 <=> x + 3 = 0 (vì x2 + 1 > 0 với mọi x)
<=> x = -3
Vậy pt có 2 nghiệm x = 1 ; x = -3
a) \(\left(8x+5\right)^2\left(4x+3\right)\left(2x+1\right)=9\)
\(\Leftrightarrow\left(64x^2+8x+25\right)\left(8x^2+10x+3\right)-9=0\)
Đặt a = \(8x^2+10x+3\)
\(\left(8a+1\right)a-9=0\)
\(\Leftrightarrow8a^2+a-9=0\)
\(\Leftrightarrow\left(a-1\right)\left(8a+9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=1\\a=-\frac{9}{8}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}8x^2+10x+3=1\\8x^2+10x+3=-\frac{9}{8}\end{cases}}\)
mà \(8x^2+10x+3=1\Rightarrow8x^2+10x+2=0\)
\(\Rightarrow2\left(x+1\right)\left(4x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\x=-0,25\end{cases}}\)
vậy 2x3-x2+5x+3 = 0 <=> (2x+1).(x2 - x+ 3) = 0 <=> 2x+1 = 0 hoặc x2 - x + 3 = 0
+) 2x+1 = 0 <=> x = -1/2
+) x2 - x+ 3 = 0 Vô nghiệm vì x2 - x+ 3 = x2 - 2.x. \(\frac{1}{2}\)+ \(\frac{1}{4}\) + \(\frac{11}{4}\) = (x - \(\frac{1}{2}\)) 2 + \(\frac{11}{4}\)> 0 với mọi x
Vậy phương trình có nghiệm x = -1/2
\(a,PT\Leftrightarrow\left(x+2\right)\left(3x+5\right)-\left(2x-4\right)\left(x+1\right)=0\)
<=> \(\left(x+2\right)\left(3x+5\right)-2\left(x+2\right)\left(x+1\right)=0\)
<=> \(\left(x+2\right)\left(3x+5-x-1-2\right)=0\)
<=> \(\left(x+2\right)\left(2x-2\right)=0\)
<=> \(\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)
Vậy: ...
\(b,PT\Leftrightarrow\left(2x+5\right)\left(x-4\right)+\left(x-4\right)\left(x+5\right)=0\)
<=> \(\left(x-4\right)\left(2x+4+x+5\right)=0\)
<=> \(\left(x-4\right)\left(3x+9\right)=0\)
<=> \(\orbr{\begin{cases}x=4\\x=-3\end{cases}}\)
Vậy: ...
\(\left(x-3\right)^3-2\left(x-1\right)=x\left(x-2\right)^2-5x^2\)
\(\Leftrightarrow x^3-6x^2+9x-3x^2+18x-27-2x+2=x^3-4x^2+4x-5x^2\)
\(\Leftrightarrow x^3-9x^2+25x-25=x^3-9x^2+4x-5x^2\)
\(\Leftrightarrow x^3-9x^2+25x-25=x^3-9x^2+4x\)
\(\Leftrightarrow-9x^2+25x-25=-9x^2+4x\)
\(\Leftrightarrow25x-25=4x\)
\(\Leftrightarrow-25=4x-25x\)
\(\Leftrightarrow-25=-21x\)
\(\Leftrightarrow x=\frac{21}{25}\)
\(\dfrac{5}{x-3}+\dfrac{4}{x+3}=\dfrac{x-5}{x^2-9}\left(ĐKXĐ:x\ne\pm3\right)\\ \Leftrightarrow\dfrac{5\left(x+3\right)+4\left(x-3\right)}{x^2-9}=\dfrac{x-5}{x^2-9}\\ \Leftrightarrow5x+15+4x-12=x-5\\ \Leftrightarrow5x+4x-x=-5-15+12\\ \Leftrightarrow8x=-8\\ \Leftrightarrow x=-1\left(TM\right)\\ Vậy:S=\left\{-1\right\}\)
-2x+3=2
=>x=0,5
hoặc -2x+3=-2
=>x=2,5