Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
a) -(2+5) = -2 - 5 = -7
b) +(-3+6) = -3 + 6 = 3
c) (-50+3) = -50 + 3 = -47
d) -(-2+3) = 2 - 3 = -1
e) -(10-3) = -10 + 3 = -7
f) -(-3)-(-3+1) = 3 + 3 - 1 = 5
g) (-5)+(-2+10) = -5 - 2 + 10 = 3
2)
a) -50+120+(-150)-20+30
= -(50 + 20) + (120 + 30 - 150)
= -70
b) 265-70+(-65)-30+15
= (265 - 65) - (70 + 30) + 15
= 200 - 100 + 15 = 115
c) -17+185-183+(-85)-63
= (185 - 85) - (183 + 17) - 63
= 100 - 200 - 63 = -163
d) -30+60+(-170)-260+19
= -(170 + 30) - (260 - 60) + 19
= -200 - 200 + 19 = -381
A=1+2+3+4+5+...+50
A=(50+1)+(49+2)+(48+3)+...
A=(50+1)*[(50-1):1+1]:2
A=51*25=1275
B=2+4+6+8+10+...+100
B=(100+2)+(98+4)+(96+6)+...
B=(100+2)*[(100-2):2+1]:2
B=102*25=2550
C=1+4+7+10+13+...+99
C=(99+1)+(96+4)+(93+7)+...
C=(99+1)*[(99-1):3+1]:2
C=100*16.8333=1683.33
D=2+5+8+11+14+...+98
D=(98+2)+(95+5)+(92+8)+...
D=(98+2)*[(98-2):3+1]:2
D=100*16.5=1650
E=1+2+3+4+5+...+25
E=(25+1)+(24+2)+(23+3)+...
E=(25+1)*[(25-1):1+1]:2
E=26*12.5=325
F=2+4+6+8+10+...+50
F=(50+2)+(48+4)+(46+6)+...
F=(50+2)*[(50-2):2+1]:2
F=52*12.5=650
G=3+5+7+9+11+...+51
G=(51+3)+(49+5)+(47+7)+...
G=(51+3)*[(51-3):2+1]:2
G=54*12.5=675
H=1+5+9+13+17+...+81
H=(81+1)+(77+5)+(73+9)+...
H=(81+1)*[(81-1):4+1]:2
H=82*10.5=861
a) A =1 + 2 + 3 + 4 + … + 50
Số số hạng của dãy số trên là:
(50 - 1) : 1 + 1 = 50 (số số hạng)
A =(1+ 50) . 50 : 2
= 51 . 50 : 2
= 2550 : 2
= 1275
b) B = 2 + 4 + 6 + 8 + ... + 100
Số số hạng của dãy số trên là:
(100 - 2) : 2 + 1 = 50 (số hạng)
Có số cặp là:
50 : 2 = 25 (cặp)
Tổng của 1 cặp là:
100 + 2 = 102
Tổng của dãy số là:
25 .102 = 2550
c) C = 1 + 3 + 5 + 7 + … + 99
Số số hạng của dãy trên là:
(99 - 1) : 2 + 1 = 50 (số số hạng)
C = (1 + 99) . 50 : 2
= 100 . 50 : 2
= 5000 : 2
= 2500
d) D = 2 + 5 + 8 + 11 + … + 98
Số số hạng của dãy trên là:
(98 - 2) : 3 + 1 = 33 (số số hạng)
=> Dãy trên có 16 cặp
D = (95 + 2) .16 + 98
= 97 . 16 + 98
= 1552 +98
= 1650
\(E=-\dfrac{1}{3}\cdot\left(1+2+3\right)-\dfrac{1}{4}\left(1+2+3+4\right)-...-\dfrac{1}{50}\left(1+2+3+...+50\right)\)
\(=\dfrac{-1}{3}\cdot\dfrac{3\cdot4}{2}-\dfrac{1}{4}\cdot\dfrac{4\cdot5}{2}-...-\dfrac{1}{50}\cdot\dfrac{50\cdot51}{2}\)
\(=\dfrac{-4}{2}-\dfrac{5}{2}-...-\dfrac{51}{2}\)
\(=\dfrac{-\left(4+5+...+51\right)}{2}\)
\(=\dfrac{-\left(51+4\right)\cdot\dfrac{48}{2}}{2}=-\dfrac{1320}{2}=-660\)
1. 1 + ( -2) +3 +(-4) + .........+ 19 + (-20)
= -1 + ( -1) +....+(-1)
= -1. 10
= -10
2. 1 – 2 + 3 – 4 + . . . + 99 – 100
= ( -1) + (-1) +....+(-1)
= -1. 50
= -50
3. 2 – 4 + 6 – 8 + . . . + 48 – 50
= (-2) + (-2) +....+ (-2)
= -2. 12 + 26
= -24 + 26
= 2
4. – 1 + 3 – 5 + 7 - . . . . + 97 – 99
= 2 + 2 +......+2
= 2.25
= 50
5. 1 + 2 – 3 – 4 + ... + 97 + 98 – 99 - 100
= (1+2-3-4) +......+ ( 97+98-99 -100)
= -4 . (-4).....(-4)
= -4. 25
= -100
a ) C = 1 + 3 + 32 + 33 + ....... + 320
<=> 3C = 3.( 1 + 3 + 32 + 33 + ...... + 320 )
<=> 3C = 3 + 32 + 33 + 34 + ....... + 321
<=> 3C - C = ( 3 + 32 + 33 + 34 + ....... + 321 ) - ( 1 + 3 + 32 + 33 + ...... + 320 )
<=> 2C = 321 - 1
=> C = ( 321 - 1 ) : 2
b ) B = 2 + 22 + 23 + ...... + 250
<=> 2B = 2.( 2 + 22 + 23 + ...... + 250 )
<=> 2B = 22 + 23 + 24 + ....... + 251
<=> 2B - B = ( 22 + 23 + 24 + ...... + 251 ) - ( 2 + 22 + 23 + ...... + 250 )
=> B = 251 - 2
a, Ta có: 3C=3+3^2+3^3+3^4+...+3^21
3C-C=(3+3^2+3^3+...+3^20+3^21)-(1+3+3^2+...+3^19+3^20)
<=>2C = 3^21 - 1 - 3^20 =3^20. (3-1) -1=3^20 .2 -1
=>C\(=\frac{3^{20}.2-1}{2}=3^{20}-\frac{1}{2}=3^{20}-0,5\)
suy ra:
2A= 2 +2^2+ 2^3 + 2^4 + 2^5+ 2^6+ 2^7
suy ra
2A-A= 1+2^7
còn mấy câu còn lại tương tự thui bạn ak
1^2+2^2+...+n^2=n(n+1)(2n+1)/6
nên áp dụng => tính được