Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

PHẠM NGUYỄN LAN ANH
góc B đã 90o rồi thì góc A làm sao mà vuông được nữa
đây phải là tam giác ABC vuông cân tại B chứ nhỉ

Bài 3 (sorry vì lười vẽ hình nha ~~)
a. Xét ΔABE vuông tại A ta có \(\widehat{ABE}+\widehat{BEA}=90^o\)(phụ nhau)
\(\Rightarrow\widehat{BEA}=90^o-\widehat{ABE}< 90^o\)(cái này là hiển nhiên rùi nhé :v) (1)
Mặt khác: \(\widehat{BEA}+\widehat{BEC}=180^o\left(kebu\right)\Leftrightarrow\widehat{BEC}=180^o-\widehat{BEA}\)(2)
Từ (1) và (2) suy ra \(\widehat{BEC}>90^ohay\widehat{BEC}\) là góc tù.
b. Ta có: \(\widehat{C}-\widehat{B}=10^o\Leftrightarrow\widehat{C}=10^o+\widehat{B}\)
Xét ΔABC vuông tại A ta có:
\(\widehat{B}+\widehat{C}=90^o\Leftrightarrow\widehat{B}+\widehat{B}+10^o=90^o\Leftrightarrow2\widehat{B}=80^o\Leftrightarrow\widehat{B}=40^o\\ \Rightarrow\widehat{C}=\widehat{B}+10^o=40^o+10^o=50^o\)
Vì BE là tia phân giác của góc ^B nên ta có:
\(\widehat{ABE}=\widehat{EBC}=\frac{\widehat{B}}{2}=\frac{40^o}{2}=20^o\)
Ta có: \(\widehat{ABE}+\widehat{AEB}=90^o\left(câua\right)\Leftrightarrow20^o+\widehat{AEB}=90^o\Leftrightarrow\widehat{AEB}=70^o\)
\(\widehat{BEC}+\widehat{AEB}=180^o\left(câua\right)\Leftrightarrow\widehat{BEC}+70^o=180^o\Leftrightarrow\widehat{BEC}=110^o\)

Ta có hình vẽ: B A C E D
(Hình vẽ chỉ mang tính chất minh họa kkkk)
Giải
Ta có: \(\Delta ABC\) có \(BA=BC\) nên \(\Delta ABC\) cân
a)Áp dụng định lí trong tam giác cân ta có: \(\widehat{A}=\widehat{C}\)
b) Theo đề bài ta có: \(\left\{{}\begin{matrix}BD=CD=\dfrac{1}{2}BC\\AE=BE=\dfrac{1}{2}BA\end{matrix}\right.\)
Vì \(BC=BA\left(gt\right)\) nên \(\dfrac{1}{2}BC=\dfrac{1}{2}BA\) nên \(BD=CD=AE=BE\)
Xét 2 tam giác \(BDA\) và \(BEC\) ta có:
\(\left\{{}\begin{matrix}BA=BC\left(gt\right)\\BD=BE\left(gt\right)\\\widehat{BCA}=\widehat{BAC}\end{matrix}\right.\Leftrightarrow\Delta BDA=\Delta BCE\left(c.g.c\right)\)
\(\Rightarrow\widehat{BDA}=\widehat{BEC}\)(2 góc tương ứng)
suy ra 1 cái phụ luôn: \(DA=EC\)(2 cạnh tương ứng)
c) Xét 2 tam giác \(ACE\) và \(CAD\) ta có:
\(\left\{{}\begin{matrix}AC-chung\\CE=AD\\AE=CD\end{matrix}\right.\Leftrightarrow\Delta ACE=\Delta CAD\left(c.c.c\right)\)
\(\Rightarrow\widehat{ACE}=\widehat{CAD}\)(2 góc tương ứng)

a: góc I+1/2*góc OCB
=góc I+góc ICA
=góc CED(Góc ngoàI)
góc A+1/2góc ODA
=góc A+EDA
=180 độ-góc AED
=góc CED(góc ngoài)
b: góc I+1/2*góc ODA
=góc I+góc IDF
=180 độ-góc IFD
=180 độ-góc BFC
=góc B+góc BCF
=góc B+1/2*góc BCA

Bài 4:
a: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{ABE}=\widehat{ACD}\)
BE=CD
Do đó: ΔABE=ΔACD
Suy ra: \(\widehat{EAB}=\widehat{DAC}\)
b: ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
Ta có: ΔADE cân tại A
mà AM là đường cao
nên AM là phân giác của góc DAE
c: Xét ΔDAE cân tại A có \(\widehat{DAE}=60^0\)
nên ΔDAE đều
Nhận xét: Các góc trong ΔAED bằng nhau và cùng bằng 60 độ

a: \(\widehat{EAB}=\dfrac{180^0-\widehat{BAC}}{2}=\dfrac{\widehat{ABC}+\widehat{ACB}}{2}\)
\(\widehat{EBA}=180^0-\widehat{ABC}\)
=>\(\widehat{EAB}+\widehat{EBA}=\dfrac{1}{2}\widehat{ABC}+\dfrac{1}{2}\widehat{ACB}+180^0-\widehat{ABC}=-\dfrac{1}{2}\widehat{ABC}+\dfrac{1}{2}\widehat{ACB}+180^0\)
=>\(\widehat{E}=180^0+\dfrac{1}{2}\widehat{ABC}-\dfrac{1}{2}\widehat{ACB}-180^0=\dfrac{1}{2}\widehat{ABC}-\dfrac{1}{2}\widehat{ACB}\)
=>góc E=1/2góc BAx-góc C
b: góc E=1/2góc BAx-góc BAx+góc B
=góc B-1/2góc xAB
c: góc E=1/2góc ABC-1/2góc ACB
=>2*góc E=góc ABC-góc ACB

bài này dễ ợt:
a,Giả sử BC là cạnh lớn nhất trong 3 cạnh
Lấy M thuộc BC sao cho AC=CM
suy ra góc AMC=180 do -góc C/2=góc MAC
suy ra góc BAM = góc A lớn - góc MAC=90 độ -5.góc C/2
góc BMA=180 độ -góc AMC=90 độ +góc C/2
suy ra góc ABM=180 độ -90độ -góc C/2-90 độ +5.góc C/2=2.góc C
ta có ĐPCM
b,Ta có:
Vì DE//BC
suy ra góc AED=góc C
góc ADE=2.góc C
Vì ED là phân giác của AEB nên góc DEB= góc C
suy ra góc DBE= góc C
suy ra tam giác BDE cân tại D suy ra DE=BD
Vậy D thuộc AB sao cho DE=DB
AB cắt CD tại M. CD cắt EF tại N. EF cắt GH tại P. AB cắt GH tại Q.
Ta có: \(\widehat{ABC}+\widehat{BCD}=\widehat{DMB}\)(do DMB là góc ngoài của tam giác MBC).
Tương tự, ta có:
\(\widehat{D}+\widehat{E}=\widehat{ENC}\)
\(\widehat{F}+\widehat{G}=\widehat{GPE}\)
\(\widehat{GHA}+\widehat{HAB}=\widehat{AQG}\)
Mà DMB,ENC,GFE,AQG là các góc ngoài của tứ giác MNPQ nên tổng của chúng bằng 360 độ
hay:\(\widehat{B}+\widehat{C}+\widehat{D}+\widehat{E}+\widehat{F}+\widehat{G}+\widehat{GHA}+\widehat{HAB}=360^0\)
Mà\(\widehat{I}+\widehat{AHI}+\widehat{HAI}=180^0\)(tổng 3 góc trong tam giác), nên ta có điều cần chứng minh.
Bạn Lâm Duy Bảo làm đúng rồi.Lần sau bạn cố gắng vẽ hình để mọi người dễ hình dung nhé.Mình tạm chấp nhận định lí "Tổng các góc ngoài của tứ giác bằng 3600" tuy lớp 7 chưa được dùng.Đây là hình minh họa bài làm của bạn :
A B C D E F G H I P M Q N