Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có:
f(x) = x3 - 3x2 + 2x - 5 + x2 = x3 -2x2 + 2x- 5
Bậc của đa thức f(x) là 3 (0.5 điểm)
g(x) = -x3 - 5x + 3x2 + 3x + 4 = -x3 + 3x2 - 2x + 4
Bậc của đa thức g(x) là 3 (0.5 điểm)
a)
f(x) = x2 - x + 5
g(x) = -x2 + 2x + 3
b)
h(x) = f(x) + g(x) = x2 - x + 5 - x2 + 2x + 3
= x + 8
a: \(F\left(x\right)=x^5-3x^2+x^3-x^2-2x+5\)
\(=x^5+x^3-4x^2-2x+5\)
\(G\left(x\right)=x^5-x^4+x^2-3x+x^2+1\)
\(=x^5-x^4+2x^2-3x+1\)
b: Ta có: \(H\left(x\right)=F\left(x\right)+G\left(x\right)\)
\(=x^5+x^3-4x^2-2x+5+x^5-x^4+2x^2-3x+1\)
\(=2x^5-x^4+x^3-2x^2-5x+6\)
a) \(...=P\left(x\right)=2x^4-x^4+3x^3+4x^2-3x^2+3x-x+3\)
\(P\left(x\right)=x^4+3x^3+x^2+2x+3\)
\(...=Q\left(x\right)=x^4+x^3+3x^2-x^2+4x+4-2\)
\(Q\left(x\right)=x^4+x^3+2x^2+4x+2\)
b) \(P\left(x\right)+Q\left(x\right)=\left(x^4+3x^3+x^2+2x+3\right)+\left(x^4+x^3+2x^2+4x+2\right)\)
\(\Rightarrow P\left(x\right)+Q\left(x\right)=2x^4+4x^3+3x^2+6x+5\)
\(P\left(x\right)-Q\left(x\right)=\left(x^4+3x^3+x^2+2x+3\right)-\left(x^4+x^3+2x^2+4x+2\right)\)
\(\)\(\Rightarrow P\left(x\right)-Q\left(x\right)=x^4+3x^3+x^2+2x+3-x^4-x^3-2x^2-4x-2\)
\(\Rightarrow P\left(x\right)-Q\left(x\right)=2x^3-x^2-2x+1\)
`a,`
`P(x)=2x^3-2x+x^2-x^3+3x+2`
`= (2x^3-x^3)+x^2+(-2x+3x)+2`
`= x^3+x^2+x+2`
`b,`
`H(x)+Q(x)=P(x)`
`-> H(x)=P(x)-Q(x)`
`-> H(x)=(x^3+x^2+x+2)-(x^3-x^2-x+1)`
`H(x)=x^3+x^2+x+2-x^3+x^2+x-1`
`= (x^3-x^3)+(x^2+x^2)+(x+x)+(2-1)`
`= 2x^2+2x+1`
Vậy, `H(x)=2x^2+2x+1.`
a.
\(P\left(x\right)=x^3+x^2+x+2\)
\(Q\left(x\right)=x^3-x^2-x+1\)
b.
\(H\left(x\right)+Q\left(x\right)=P\left(x\right)\Rightarrow H\left(x\right)=P\left(x\right)-Q\left(x\right)\)
\(\Rightarrow H\left(x\right)=x^3+x^2+x+2-\left(x^3-x^2-x+1\right)\)
\(\Rightarrow H\left(x\right)=2x^2+2x+1\)
\(a) f ( x ) = 2 x ^4 + 3 x ^2 − x + 1 − x ^2 − x ^4 − 6 x ^3\)
\(= ( 2 x ^4 − x ^4 ) − 6 x ^3 + ( 3 x ^2 − x ^2 ) − x + 1\)
\(= x ^4 − 6 x ^3 + 2 x ^2 − x + 1\)
\(g ( x ) = 10 x ^3 + 3 − x ^4 − 4 x ^3 + 4 x − 2 x ^2\)
\(= − x ^4 + ( 10 x ^3 − 4 x ^3 ) − 2 x ^2 + 4 x + 3\)
\(= − x ^4 + 6 x ^3 − 2 x ^2 + 4 x + 3\)
\(b) f ( x ) + g ( x ) = x ^4 − 6 x ^3 + 2 x ^2 − x + 1 − x ^4 + 6 x ^3 − 2 x ^2 + 4 x + 3\)
\(= ( x ^4 − x ^4 ) + ( − 6 x ^3 + 6 x ^3 ) + ( 2 x ^2 − 2 x ^2 ) + ( − x + 4 x ) + ( 1 + 3 )\)
\(= 3 x + 4\)
c)Có \(h ( x ) = f ( x ) + g ( x ) = 3 x + 4\)
\(Cho h ( x ) = 0 ⇒ 3 x + 4 = 0\)
\(⇒ 3 x = − 4\)
\(⇒ x = − \frac{4 }{3} \)
Vậy \(x=-\frac{4}{3}\) là nghiệm của \(h ( x ) \)
a: f(x)=x^3-2x^2+2x-5
g(x)=-x^3+3x^2-2x+4
b: Sửa đề: h(x)=f(x)+g(x)
h(x)=x^3-2x^2+2x-5-x^3+3x^2-2x+4=x^2-1
c: h(x)=0
=>x^2-1=0
=>x=1 hoặc x=-1