K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2022

\(f\left(x\right)=x^{2020}-20x^{2019}+20x^{2018}-...-20x+30\)

\(\Rightarrow f\left(19\right)=x^{2020}-\left(x-1\right)x^{2019}+\left(x-1\right)x^{2018}-...-\left(x-1\right)x+30\)

\(=x^{2020}-x^{2020}+x^{2019}-x^{2019}-x^{2018}-...-x^2+x+30\)

\(=x+30\)\(=19+30=49\)

Tính [G(x) - f(x) ] = ( \(1-x^2+.....+x^{2020}\)) -  (\(x^{2020}-x^{2019}+....-x+1\))

                          = (\(x^{2020}-x^{2019}+....-x+1\)) - (\(x^{2020}-x^{2019}+....-x+1\))

                          = 0

=> h(x) = [G(x) - f(x) ] * [G(x) + f(x) ]

            = 0 * [G(x) + f(x) ]

           = 0

11 tháng 5 2021

Ta có :

f(0) = a.0^2 + b.0 + c = 2018 => c = 2018

f(1) = a + b + c = 2019 => a + b = 1

f(-1) = a - b + c = 2020 => a - b = 2

Suy ra : a = 1,5 ; b = = - 0,5

Vậy : f(x) = 1,5x^2 - 0,5x + 2018

Suy ra: f(2) = 1,5.2^2 - 0,5.2 + 2018 = 2023

27 tháng 12 2019

con cặc tụi mày làm ăn như cục cứt

x=2020 nên x+1=2021

\(P\left(x\right)=x^{2021}-x^{2020}\left(x+1\right)+x^{2019}\left(x+1\right)-....+x\left(x+1\right)-2020\)

\(=x^{2021}-x^{2021}-x^{2020}+x^{2020}-...+x^2+x-2020\)

=x-2020=0