Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(-1\right)=1-1+1-1-1+1=0\)
Vậy....
\(g\left(x\right)=\left(x+1\right).\left(x+2\right)=x^2+3x+2\)
Thay x = -1 vào đa thức f(x), ta có:
-1100 + (-1)75 + (-1)50 + (-1)25 + (-1) + 1
= 1 - 1 + 1 - 1 - 1 + 1
= 0
Vậy x = -1 là nghiệm của f(x)
b) Bạn làm tương tự nhé!
KT cần nhớ: x2k \(\ge\) 0 \(\forall x\) và x2k+1\(\le\) 0 (x < 0)
Chỉnh lại xíu: f(x)=x100+x75+x50+x25+x+1
Ta có: f(-1)=(-1)100+(-1)75+(-1)50+(-1)25+(-1)+1
=1-1+1-1-1+1=0
=>x=-1 là nghiệm của f(x)(đpcm)
\(\text{Gọi Nghiệm đó là: r}\Rightarrow f\left(r\right)=r^3+ar^2+br=-2020\Rightarrow r\inƯ\left(2020\right)\Rightarrow r=101\left(\text{vì 100}< r< 200\right)\)
vậy nghiệm đó là: 101
Ta có: a,b nguyên, x nguyên:
\(x^3+ax^2+bx+2020=0\)
\(\Leftrightarrow x^3+ax^2+bx=-2020\)
\(\Leftrightarrow x^2+ax+b=\frac{-2020}{x}\)
Do a,b,x nguyên => \(\frac{-2020}{x}\)nguyên mà \(x\in\left(100;200\right)\)
\(\Rightarrow\frac{-2020}{x}\in\left(-20,1;-10,2\right)\)
Ta thay lần lượt các giá trị của \(\frac{-2020}{x}\)từ -20 -> -10 sao cho x nguyên
=> x=101 thỏa mãn yêu cầu bài toán
a) \(f\left(x\right)=x^2-\left(m-1\right)x+3m-2\)
Để đa thức f(x) có nghiệm là -1 khi:
\(f\left(-1\right)=\left(-1\right)^2-\left(m-1\right).\left(-1\right)+3m-2=0\)
\(\Rightarrow1+m-1+3m-2=0\)
\(\Rightarrow4m=2\Rightarrow m=\dfrac{1}{2}\)
b) \(g\left(x\right)=x^2-2\left(m+1\right)x-5m+1\)
Để đa thức g(x) có nghiệm là 2 khi:
\(g\left(2\right)=2^2-2\left(m+1\right).2-5m+1=0\)
\(\Rightarrow4-4\left(m+1\right)-5m+1=0\)
\(\Rightarrow4-4m-1-5m+1=0\)
\(\Rightarrow-9m=-4\Rightarrow m=\dfrac{4}{9}\)
c) \(h\left(x\right)=-2x^2+mx-7m+3\)
Để đa thức h(x) có nghiệm là -1 khi:
\(h\left(-1\right)=-2\left(-1\right)^2+m.\left(-1\right)-7m+3=0\)
\(\Rightarrow-2-m-7m+3=0\)
\(\Rightarrow-8m=-1\Rightarrow m=\dfrac{1}{8}\)
d) -Để \(f\left(1\right)=g\left(2\right)\) khi và chỉ khi
\(1^2-\left(m-1\right).1+3m-2=2^2-2\left(m+1\right).2-5m+1\)
\(\Rightarrow1-m+1+3m-2=4-4m-4-5m+1\)
\(\Rightarrow11m=1\Rightarrow m=\dfrac{1}{11}\)
-Để \(g\left(1\right)=h\left(-2\right)\) khi và chỉ khi
\(1^2-2\left(m+1\right).1-5m+1=-2\left(-2\right)^2+m.\left(-2\right)-7m+3\)
\(\Rightarrow1-2m-2-5m+1=-8-2m-7m+3\)
\(\Rightarrow2m=-5\Rightarrow m=-\dfrac{5}{2}\)
1: f(-1)=0
=>1+m-1+3m-2=0 và
=>4m-2=0
=>m=1/2
2: g(2)=0
=>2^2-4(m+1)-5m+1=0
=>4-5m+1-4m-4=0
=>-9m+1=0
=>m=1/9
4: f(1)=g(2)
=>1-(m-1)+3m-2=4-4(m+1)-5m+1
=>1-m+1+3m-2=4-4m-4-5m+1
=>2m-2=-9m+1
=>11m=3
=>m=3/11
3:
H(-1)=0
=>-2-m-7m+3=0
=>-8m=-1
=>m=1/8
5: g(1)=h(-2)
=>1-2(m+1)-5m+1=-8-2m-7m+3
=>-5m+2-2m-2=-9m-5
=>-7m=-9m-5
=>2m=-5
=>m=-5/2
ai trả lời nhanh nhất sẽ
f(x ) = 1 -1 + 1 -1 -1+1 = 0
f(x)= 1-1+1-1+1-1=0