Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}\) = \(\frac{x+y+z}{x+y+z}=1\)
=> \(x=y=z\)
\(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\left(1+\frac{x}{x}\right)=\left(1+\frac{y}{y}\right)=\left(1+\frac{z}{z}\right)\)\(=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2\cdot2\cdot2=8\)
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
\(=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}\)
\(=\frac{\left(y-y+y\right)+\left(z-z+z\right)+\left(-x+x+x\right)}{x+y+z}\)
\(=\frac{y+z+x}{x+y+z}=1\)
\(\Rightarrow x=y=z\)
Thay vào ta có :
\(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
\(=\left(1+1\right)\left(1+1\right)\left(1+1\right)\)
\(=2^3=8\)
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)z=>((y+z)/x)-1=((z+x)/y)-1=((x+y)/z)-1
=>y+z/x=z+x/y=x+y/z
=>áp dụng tính chất dãy tỉ số bằng nhau
=>y+z=2x
z+x=2y
x+y=2z
=>A=(8xyz/xyz)=8
Áp dụng tính chất tỉ lệ thức, ta có:
\(\frac{y+z-x}{x}+\frac{z+x-y}{y}+\frac{x+y-z}{2}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
\(\Rightarrow y+z-x=x;z+x-y=y;x+y-z=z\)
Do đó ta có:
\(1+\frac{x}{y}=\frac{z+x-y}{y}+\frac{y+z-x}{y}=\frac{2z}{y}\)
Tương tự ta có:
\(1+\frac{y}{z}=\frac{2x}{z}\)và \(1+\frac{z}{x}=\frac{2y}{x}\)
Do đó biểu thức sẽ bằng:
\(\frac{2x}{z}.\frac{2y}{x}.\frac{2z}{y}=\frac{8xyz}{xyz}=8\)
Áp dụng tính chất tỉ lệ thức có:
(y+z-x)/x + (z+x-y)/y + (x+y-z)/z= (y+z-x+z+x-y+x+y-z)/(x+y+z)= (x+y+z)/(x+y+z)=1
=>y+z-x=x ; z+x-y=y và x+y-z=z
Do đó ta có:
(1 + x/y)= [(z+x-y)/y + (y+z-x)/y] =2z/y
Tương tự có:
1 + y/z=2x/z và 1 + z/x =2y/x
Do đó biểu thức sẽ bằng :
2x/z . 2y/x . 2z/y = 8xyz/xyz =8
Áp dụng tính chất dãy tỉ số bằng nhau thì có:
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{x+y+z}{x+y+z}=1\)
\(\Rightarrow\frac{y+z-x}{x}=1\Rightarrow y+z-x=x\Leftrightarrow y+z=2x\)(1)
Tương tự: \(z+x=2y;\)(2) \(x+y=2z\)(3)
Đặt \(S=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
\(S=\frac{x+y}{y}.\frac{y+z}{z}.\frac{z+x}{x}\). Thay (1); (2) và (3) vào S có:
\(S=\frac{2x.2y.2z}{xyz}=8\). ĐS: ...
áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{y+z}{x}\)=\(\frac{z+x}{y}\)=\(\frac{x+y}{z}\)=\(\frac{2\left(x+y+z\right)}{x+y+z}\)= 2
từ \(\frac{y+z}{x}\)=2 suy ra y+z=2x
từ \(\frac{z+x}{y}\)=2 suy ra z+x=2y
từ \(\frac{x+y}{z}\)=2 suy ra x+y=2z
thay vào ta có:
B=(1+\(\frac{x}{y+z}\))(1+\(\frac{y}{x+z}\))(1+\(\frac{z}{x+y}\))
= (1+1/2)(1+1/2)(1+1/2)
=3/2.3=9/2
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
\(\Rightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)
\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)
\(\Rightarrow x=y=z\)
\(\Rightarrow\frac{x}{y}=1;\frac{y}{z}=1;\frac{x}{z}=1\)
\(\Rightarrow B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2.2.2=8\)