Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong toán tuổi thơ có bài này =))))
Do vai trò bình đẳng khi hoán vị vòng quanh các số x,y,z trong bài toán. Nên ta co thể giả sử \(x\ge z,y\ge z\).Ta có: \(\frac{x^2-z^2}{y+z}+\frac{y^2-x^2}{z+x}+\frac{z^2-y^2}{x+y}\)
\(=\frac{x^2-y^2+y^2-z^2}{y+z}+\frac{y^2-x^2}{z+x}+\frac{z^2-y^2}{x+y}\)
\(=\left(x^2-y^2\right)\left(\frac{1}{y+z}-\frac{1}{x+y}\right)\)
\(=\frac{\left(x+y\right)\left(x-y\right)^2}{\left(y+z\right)\left(z+x\right)}+\frac{\left(y^2-z^2\right)\left(x-z\right)}{\left(y+z\right)\left(x+y\right)}\ge0\)
Đẳng thức xảy ra khi và chỉ khi x = y = z
Ta co : x^2=yz
\(\frac{x}{y}=\frac{z}{x}\Rightarrow\left(\frac{x}{y}\right)^2=\left(\frac{z}{x}\right)^2=\left(\frac{x-z}{y-x}\right)^2\left(1\right)\)
\(\frac{x}{y}=\frac{z}{x}\Rightarrow\left(\frac{x}{y}\right)^2=\left(\frac{z}{x}\right)^2\Rightarrow\frac{x^2}{y^2}=\frac{z^2}{x^2}=\frac{x^2+z^2}{y^2+x^2}\)
Lai co :\(\frac{x}{y}=\frac{z}{x}=\left(\frac{x}{y}\right)^2=\left(\frac{z}{x}\right)^2\)
=> \(\frac{z}{y}=\left(\frac{x}{y}\right)^2=\left(\frac{z}{x}\right)^2\left(3\right)\)
Từ (1) và (2) suy ra :
\(\frac{z}{y}=\frac{x^2+z^2}{y^2+x^2}=\left(\frac{x-z}{y-x}\right)^2\)
a) \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=2\)
\(\Rightarrow x+y+z=\frac{1}{2}\)(do 1/(x+y+z)=2)
\(\Rightarrow y+z=\frac{1}{2}-x;z+x=\frac{1}{2}-y;x+y=\frac{1}{2}-z\)
Thay vào lần lượt ta có:
\(\frac{\frac{1}{2}-x+1}{x}=2\)\(\Rightarrow x=\frac{1}{2}\)
\(\frac{\frac{1}{2}-y+2}{y}=2\)\(\Rightarrow y=\frac{5}{6}\)
\(\frac{\frac{1}{2}-z-3}{z}=2\)\(\Rightarrow z=-\frac{5}{6}\)
Đặt: \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=k\)
\(\Rightarrow x=k\)
\(y=2k\)
\(z=3k\)
Thay x = k , y = 2k , z = 3k vào biểu thức cần cm ,ta đc:
\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{4}{y}+\frac{9}{z}\right)=\left(k+2k+3k\right)\left(\frac{1}{k}+\frac{4}{2k}+\frac{9}{3k}\right)\)
\(=6k.\left(\frac{1}{k}+\frac{2}{k}+\frac{3}{k}\right)\)
\(=6k.\frac{6}{k}\)
\(=\frac{36k}{k}=36\)
=.= hok tốt!!
Đặt \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=k\)
Do đó \(x=k;y=2k;z=3k\)
Thay \(x=k;y=2k;z=3k\)vào \(\left(x+y+z\right).\left(\frac{1}{x}+\frac{4}{y}+\frac{9}{z}\right)\)ta có
\(\left(k+2k+3k\right).\left(\frac{1}{k}+\frac{4}{2k}+\frac{9}{3k}\right)\)
\(=6k.\left(\frac{6}{6k}+\frac{12}{6k}+\frac{18}{6k}\right)\)
\(=6k.\frac{6+12+18}{6k}\)
\(=\frac{6k.\left(6+12+18\right)}{6k}\)
\(=36\)
Do đó \(\left(x+y+z\right).\left(\frac{1}{x}+\frac{4}{y}+\frac{9}{z}\right)=36\)
Ta có : \(\dfrac{x}{2013}=\dfrac{y}{2014}=\dfrac{z}{2015}\)
Suy ra \(\dfrac{x}{2013}=\dfrac{y}{2014}=\dfrac{z}{2015}=\dfrac{x-y}{2013-2014}=\dfrac{x-y}{-1}\)
\(\frac{x}{z}=\frac{z}{y}\Leftrightarrow z^2=xy\)
Thay vào ta có: \(\frac{x^2+z^2}{z^2+y^2}=\frac{x^2+xy}{y^2+xy}=\frac{x\left(x+y\right)}{y\left(x+y\right)}=\frac{x}{y}\)
ta có x/z = z/ y
=> x^2/z^2 = z^2/ y^2 = xz/zy = x/y (1)
từ (1) adtcdtsbn
x^2/z^2 = z^2/ y^2 = \(\frac{x^2+z^2}{z^2+y^2}\)(2)
từ (1) (2) => đpcm
vậy................