Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2: Cho x/y=y/z=z/x
+ Trường hợp 1: x/y=y/z=z/x=0
=> x = y= z = 0
=> z^576 =0
=> Không thoả mãn phân số
+ Trường hợp 2: x;y;z khác 0
Áp dụng tính chất của dãy tỉ số bằng nhau có:
x/y = y/z = z/x = (x+y+z)/(y+z+x) = 1
=> x = y = z
=> x^123 . y^456 = z^579
=> Phân số có giá trị = 1
k cho tớ nha!!!
Theo t/c dãy tỉ số=nhau;
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\) (x+y+z \(\ne\) 0)
=>x=y=z
Ta có: \(\frac{x^{123}.y^{456}}{z^{579}}=\frac{z^{123}.z^{456}}{z^{579}}=\frac{z^{579}}{z^{579}}=1\)
Vậy....
Theo t/c dãy tỉ số=nhau:
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)
=>x=y=z
Ta có: \(\frac{x^{123}.y^{456}}{z^{579}}=\frac{z^{123}.z^{456}}{z^{579}}=\frac{z^{579}}{z^{579}}=1\)
1 Ta có x -24 = y
Suy ra x - y = 24
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/7 = y/3 = x-y/7-3 =24/4=6
suy ra x= 42
y = 18
Mình làm 1 phép thôi nha những phép còn lại bạn tự nghĩ nhé !
\(\frac{x}{7}=\frac{y}{3}\) và \(x-24=y\)'
Ta có : \(x-24=y\) hay cũng có thể viết \(x-y=24\)
Ta lại có : \(\frac{x}{7}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau nên ta được :
\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{24}{4}=6\) ( vì \(x-y=24\) )
\(\Rightarrow\frac{x}{7}=6\Rightarrow x=6\cdot7\Rightarrow x=42\)
\(\Rightarrow\frac{y}{3}=6\Rightarrow y=6\cdot3\Rightarrow y=18\)
Vậy \(x=42\) và \(y=18\)
a)Ta có : 2x+2y-z-7=0 => 2x+2y-z=7
Ta có : \(x=\frac{y}{2}=>\frac{x}{2}=\frac{y}{4}\)
Mà \(\frac{y}{4}=\frac{z}{5}\)nên \(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}=\frac{2x+2y-z}{4+8-5}=\frac{7}{7}=1\)
Từ \(\frac{x}{2}=1=>x=2\)
Từ\(\frac{y}{4}=1=>y=4\)
Từ \(\frac{z}{5}=1=>z=5\)
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}\)
Đề phải là : \(\frac{x}{3}=\frac{y}{4}\)nhé b
Ta có : \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\)(*)
\(\frac{y}{2}=\frac{z}{3}\Rightarrow\frac{y}{12}=\frac{z}{18}\)(**)
Từ (1) và (2) \(\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{18}=\frac{x-y-z}{9-12-18}=\frac{49}{-21}=\frac{7}{-3}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x}{9}=\frac{7}{-3}\Rightarrow x=-21\\\frac{y}{12}=\frac{7}{-3}\Rightarrow x=-28\\\frac{z}{18}=\frac{7}{-3}\Rightarrow z=-42\end{cases}}\)
Vậy ......
\(\frac{x}{2}=\frac{y}{3};\frac{y}{2}=\frac{z}{5}\)
\(\Leftrightarrow\frac{x}{4}=\frac{y}{6};\frac{y}{6}=\frac{z}{15}\)
\(\Leftrightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{15}=\frac{x}{4}=\frac{y}{6}=\frac{3z}{45}\)
\(\Leftrightarrow\frac{x}{4}=\frac{y}{6}=\frac{3z}{45}=\frac{z+y-3z}{4+6-45}=\frac{2}{-35}\) ( áp dụng tính chất dãy tỉ số bằng nhau )
\(\Rightarrow\hept{\begin{cases}\frac{x}{4}=\frac{2}{-35}\\\frac{y}{6}=\frac{2}{-35}\\\frac{3z}{45}=\frac{2}{-35}\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{8}{35}\\y=-\frac{12}{35}\\z=-\frac{6}{7}\end{cases}}\)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{y}\)=\(\frac{y}{z}\)=\(\frac{z}{x}\)=\(\frac{x+y+z}{x+y+z}\)= 1
=> N = x^( 123 + 456) = x^579
=> N = x^579 / 2^579