\(\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2021

ĐKXĐ: x \(\ne\)\(\pm\)1; x > 0

Ta có: \(\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}\)

\(\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{x+1}{\sqrt{x}}\)

\(\frac{x+\sqrt{x}+1}{\sqrt{x}}-\frac{x-\sqrt{x}+1}{\sqrt{x}}+\frac{x+1}{\sqrt{x}}\)

\(\frac{x+\sqrt{x}+1-x+\sqrt{x}-1+x+1}{\sqrt{x}}=\frac{x+2\sqrt{x}+1}{\sqrt{x}}=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)

DD
3 tháng 7 2021

Điều kiện xác định của biểu thức đã cho là: 

\(\hept{\begin{cases}x\ge0\\x-\sqrt{x}\ne0\\x+\sqrt{x}\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>0\\x\ne1\end{cases}}\).

\(A=\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}\)

\(=\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{x+1}{\sqrt{x}}\)

\(=\frac{x+\sqrt{x}+1}{\sqrt{x}}-\frac{x-\sqrt{x}+1}{\sqrt{x}}+\frac{x+1}{\sqrt{x}}\)

\(=\frac{\left(x+\sqrt{x}+1\right)-\left(x-\sqrt{x}+1\right)+\left(x+1\right)}{\sqrt{x}}\)

\(=\frac{x+2\sqrt{x}+1}{\sqrt{x}}\)

12 tháng 8 2017

\(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2'x-1'}{\sqrt{x}-1}\) 

Rút gọn ta được:

\(P=\frac{x^1-\sqrt{x}}{x+\sqrt{x}+1}-\frac{1x+\sqrt{x}}{\sqrt{x}}+\frac{1'x-1'}{\sqrt{x}-1}\)

Phần \(\frac{2'x-1'}{\sqrt{x-1}}\) rút gọi được phần 2 thôi

Đề không yêu cầu Giải Phương trình nhé :v

P/s: Có chắc không nhỉ ?

12 tháng 8 2017

mình không hiểu bạn làm cho lắm?

17 tháng 8 2016

bài 2 : ĐKXĐ : \(x\ge0\) và \(x\ne1\) 

Rút gọn :\(B=\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{5\sqrt{x}-1}{x-1}\)

               \(B=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{5\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

                \(B=\frac{x+2\sqrt{x}+1-x+2\sqrt{x}-1-5\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

               \(B=\frac{-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

                \(B=\frac{-1}{\sqrt{x}+1}\)

23 tháng 6 2021

\(a,ĐKXĐ:x\ge0;x\ne1\)

\(P=\left(\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)}{1-\sqrt{x}}+\sqrt{x}\right)\left(\frac{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}+x\right)}{1+\sqrt{x}}-\sqrt{x}\right)\)

\(P=\left(1+\sqrt{x}+x+\sqrt{x}\right)\left(1-\sqrt{x}+x-\sqrt{x}\right)\)

\(P=\left(x+2\sqrt{x}+1\right)\left(x-2\sqrt{x}+1\right)\)

\(P=\left(x+1\right)^2\left(x-1\right)^2\)

\(P=\left[\left(x+1\right)\left(x-1\right)\right]^2\)

\(P=\left(x^2+x-x-1\right)^2\)

\(P=\left(x^2-1\right)^2\)

b, \(7-4\sqrt{3}=2^2-4\sqrt{3}+\sqrt{3}\)

\(\left(2-\sqrt{3}\right)^2\)

\(P=\left(x^2-1\right)^2< \left(2-\sqrt{3}\right)^2\)

\(x^2-1< 2-\sqrt{3}\)

\(x^2< 3-\sqrt{3}\)

\(x< \sqrt{3-\sqrt{3}}\)

23 tháng 6 2021

a) ĐKXĐ: \(\hept{\begin{cases}x\ge0\\1-\sqrt{x}\ne0\\1+\sqrt{x}\ne0\end{cases}}\) <=> \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

Ta có: \(P=\left(\frac{1-x\sqrt{x}}{1-\sqrt{x}}+\sqrt{x}\right)\left(\frac{1+x\sqrt{x}}{1+\sqrt{x}}-\sqrt{x}\right)\)

\(P=\left(\frac{\left(1-\sqrt{x}\right)\left(x+\sqrt{x}+1\right)}{1-\sqrt{x}}+\sqrt{x}\right)\left(\frac{\left(1+\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}{\left(1+\sqrt{x}\right)}-\sqrt{x}\right)\)

\(P=\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)^2=\left(x-1\right)^2\)

b) Với x > = 0 và x khác 1

Ta có: \(P< 7-4\sqrt{3}\)

<=> \(\left(x-1\right)^2< \left(2-\sqrt{3}\right)^2\)

<=> \(\left(x-1-2+\sqrt{3}\right)\left(x-1+2-\sqrt{3}\right)< 0\)

<=> \(\left(x-3+\sqrt{3}\right)\left(x+1-\sqrt{3}\right)< 0\)

<=> \(\hept{\begin{cases}x-3+\sqrt{3}< 0\\x+1-\sqrt{3}>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-3+\sqrt{3}>0\\x+1-\sqrt{3}< 0\end{cases}}\)

<=> \(\hept{\begin{cases}x< 3-\sqrt{3}\\x>\sqrt{3}-1\end{cases}}\) hoặc \(\hept{\begin{cases}x>3-\sqrt{3}\\x< \sqrt{3}-1\end{cases}}\)

<=> \(\sqrt{3}-1< x< 3-\sqrt{3}\)

25 tháng 10 2020

a , Mik xin phép đc chỉnh \(\frac{1}{x-\sqrt{x}}\Rightarrow\frac{1}{\sqrt{x}-1}\)vì 2 lý do :

    1 -  Bạn ghi đề ko đúng hoặc do đề sai.

    2 - Nếu để nguyên mà làm thì sẽ rất khó để rút gọn ở cuối đoạn , dẫn đến việc khó có thể làm câu b.

    ( ! ) Nhớ xem lại đề để xem có mắc lỗi hay nhầm lẫn ở chỗ nào ko nha ;)

       ĐKXĐ : \(x\ge0;x\ne1\)

      \(P=\left(\frac{1}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+1}\right):\frac{\sqrt{x}}{x-2\sqrt{x}+1}\)

         \(=\left(\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)^2}\)

         \(=\frac{\sqrt{x}+1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)^2}\)

         \(=\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)

         \(=\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)

         \(=\frac{2\sqrt{x}-2}{\sqrt{x}+1}\)

25 tháng 10 2020

b , Ok câu b thì rất là đơn giản , mik ko làm hộ đâu :))

C1 : \(P>0,5\Leftrightarrow P>\frac{1}{2}\Leftrightarrow\frac{1}{2}-P< 0\)và tự làm tiếp

C2 : \(P>0,5\Leftrightarrow P>\frac{1}{2}\Leftrightarrow P-\frac{1}{2}>0\)và cũng tự làm tiếp 

Thay P = (Câu a)  + quy đồng  + rút gọn và đc kết quả là \(\frac{5-3\sqrt{x}}{2\sqrt{x}+2}< 0\)( C1 ) hoặc \(\frac{3\sqrt{x}-5}{2\sqrt{x}+2}>0\)( C2 )

Tới đây bạn lập luận Vì \(2\sqrt{x}+2>0\forall x\ge0;x\ne1\)nên suy ra \(5-3\sqrt{x}>0\)(C1 ) hoặc \(3\sqrt{x}-5< 0\)(C2 ) và giải bất phương trình như bình thường , đc kết quả là  \(x< \frac{25}{9}\)

Kết luận : Vậy để P > 0,5 ( Hay \(\frac{1}{2}\)) thì  \(x< \frac{25}{9}\)

26 tháng 7 2018

A = \(\frac{1+x}{x+\sqrt{x}}.\frac{\sqrt{x}+1}{3}\)=\(\frac{1+x}{3\sqrt{x}}\)

ĐKXĐ : x > 0