Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a) \(\frac{11}{2}-\frac{2}{3}:\left|2x+-\frac{3}{2}\right|=3\)
\(-\frac{2}{3}:\left|2x+-\frac{3}{2}\right|=3-\frac{11}{2}\)
\(-\frac{2}{3}:\left|2x+-\frac{3}{2}\right|=-\frac{5}{2}\)
\(\left|2x+-\frac{3}{2}\right|=-\frac{2}{3}:\left(-\frac{5}{2}\right)\)
\(\left|2x+-\frac{3}{2}\right|=\frac{4}{15}\)
\(\Rightarrow\left|2x+-\frac{3}{2}\right|\in\text{{}\frac{4}{15};-\frac{4}{15}\)}
Nếu, \(2x+\left(-\frac{3}{2}\right)=\frac{4}{15}\)
\(2x=\frac{53}{30}\)
\(x=\frac{53}{60}\)
Nếu, \(2x+\left(-\frac{3}{2}\right)=-\frac{4}{15}\)
\(2x=\frac{37}{30}\)
\(x=\frac{37}{60}\)
Vậy \(x\in\text{{}\frac{53}{60};\frac{37}{60}\)}
b) \(\left|\frac{2}{7}x-\frac{1}{5}\right|-\left|-x+\frac{4}{9}\right|=0\)
\(\left|\frac{2}{7}x-\frac{1}{5}\right|=\left|-x+\frac{4}{9}\right|\)
\(\Rightarrow\left|\frac{2}{7}x-\frac{1}{5}\right|\in\text{{}-x+\frac{4}{9};-\left(x+\frac{4}{9}\right)\)}
Nếu, \(\frac{2}{7}x-\frac{1}{5}=-x+\frac{4}{9}\)
\(x=\frac{203}{405}\)
Nếu, \(\frac{2}{7}x-\frac{1}{5}=-\left(-x+\frac{4}{9}\right)\)
\(\frac{2}{7}x-\frac{1}{5}=x-\frac{4}{9}\)
\(\frac{2}{7}x-x=\frac{1}{5}-\frac{4}{9}\)
\(-\frac{5}{7}x=-\frac{11}{45}\)
\(x=\frac{77}{225}\)
Vậy \(x\in\text{{}\frac{203}{405};\frac{77}{225}\)}
1a) \(\frac{5}{1,2}=\frac{-2,5}{x}\)
\(\Leftrightarrow5x=-3\)
\(\Leftrightarrow x=\frac{-3}{5}\)
b) \(\frac{3,2+\left(-0,4\right)}{-x-3,6}=\frac{-0,75}{1,5}\)
\(\Leftrightarrow\frac{2,8}{-x-3,6}=\frac{-0,75}{1,5}\)
\(\Leftrightarrow4,2=0,75x+2,7\)
\(\Leftrightarrow0,75x=1,5\)
\(\Leftrightarrow x=2\)
2) \(\frac{1}{3}.\frac{5}{7}=\frac{2}{7}.\frac{5}{6}\)
Tỉ lệ thức lập được \(\frac{5}{21}=\frac{10}{42}\)
a/
\(x-y=\frac{a}{b}-\frac{c}{d}=\frac{ad-cb}{bd}=\frac{1}{bd}.\) (1)
\(y-z=\frac{c}{d}-\frac{e}{h}=\frac{ch-de}{dh}=\frac{1}{dh}\)(2)
+ Nếu d>0 => (1)>0 và (2)>0 => x>y; y>x => x>y>z
+ Nếu d<0 => (1)<0 và (2)<0 => x<y; y<z => x<y<z
b/
\(m-y=\frac{a+e}{b+h}-\frac{c}{d}=\frac{ad+de-cb-ch}{d\left(b+h\right)}=\frac{\left(ad-cb\right)-\left(ch-de\right)}{d\left(b+h\right)}=\frac{1-1}{d\left(b+h\right)}=0\)
=> m=y
+
cảm ơn bn nha Nguyễn Ngoc Anh Minh mk k cho bn r đó kb vs mk nha
a) Ta có: \(\hept{\begin{cases}\left|x+\frac{1}{2}\right|\ge0\\\left|2y-1\right|\ge0\end{cases}}\)
\(\Rightarrow\left|x+\frac{1}{2}\right|+\left|2y-1\right|+11\ge11\)
\(\Rightarrow A\ge11\)
\(\Rightarrow\)GTNN của A là 11 \(\Leftrightarrow\hept{\begin{cases}\left|x+\frac{1}{2}\right|=0\\\left|2y-1\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{1}{2}\end{cases}}\)
Vậy ...
b) Ta có: \(\hept{\begin{cases}\left|x-1,2\right|\ge0\\\left|y+1\right|\ge0\end{cases}}\)
\(\Rightarrow\left|x-1,2\right|+\left|y+1\right|+1\ge1\)
\(\Rightarrow\frac{1}{\left|x-1,2\right|+\left|y+1\right|+1}\le1\)
\(\Rightarrow\frac{7}{\left|x-1,2\right|+\left|y+1\right|+1}\le7\)
\(\Rightarrow B\le7\)
\(\Rightarrow\)GTNN của B là 7 \(\Leftrightarrow\hept{\begin{cases}\left|x-1,2\right|=0\\\left|y+1\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1,2\\y=-1\end{cases}}\)
Vậy ...
\(\frac{x-1}{4}=\frac{2x+1}{5}\)
\(\Rightarrow5\left(x-1\right)=4\left(2x+1\right)\)
\(\Rightarrow5x-5=8x+4\)
\(\Rightarrow5x-8x=4+5\)
\(\Rightarrow-3x=9\)
\(\Rightarrow x=-3\)
vậy_
\(\frac{x+2}{x-1}=\frac{x-3}{x+1}\)
\(\Rightarrow\left(x+2\right)\left(x+1\right)=\left(x-1\right)\left(x-3\right)\)
\(\Rightarrow x^2+x+2x+2=x^2-3x-x+3\)
\(\Rightarrow x^2+x+2x-x^2+3x+x=3-2\)
\(\Rightarrow7x=1\)
\(\Rightarrow x=\frac{1}{7}\)
vậy_
\(\frac{x+6}{15}=\frac{5-x}{7}\)
\(\Leftrightarrow\left(x+6\right).7=\left(5-x\right).15\)
\(\Leftrightarrow7x+42=75-15x\)
\(\Leftrightarrow7x+15x=75-42\)
\(\Leftrightarrow22x=33\)
\(\Leftrightarrow x=\frac{3}{2}\)
=> 7.(x+6)= 15.(5-x)
=> 7x +7.6=15.5-15x
=> 7x + 42= 75 -15x
=> 7x+15x=75-42
=> 22x=33
=>x= 1,5