\(\frac{x+5}{x^2-5x}\)-\(\frac{x+25}{2x^2-50}\)=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2020

\(\frac{x+5}{x^2-5x}-\frac{x+25}{2x^2-50}=\frac{x-5}{2x^2+10x}\) (α)

ĐKXĐ : \(x\ne0;x\ne\pm5\)

Với đk trên, ta có :

(α) ⇔ \(\frac{2\left(x+5\right)^2}{2x\left(x^2-25\right)}-\frac{x^2+25x}{2x\left(x^2-25\right)}=\frac{\left(x-5\right)^2}{2x\left(x^2-25\right)}\)

\(2\left(x^2+10x+25\right)-x^2-25x=x^2-10x+25\)

\(2x^2+20x+50-x^2-25x=x^2-10x+25\)

\(2x^2-x^2-x^2+20x-25x+10x=25-50\)

\(5x=-25\)

\(x=-5\) (loại)

Vậy : \(S=\varnothing\)

21 tháng 4 2020
https://i.imgur.com/TqKLfP9.jpg
23 tháng 6 2019

ĐK: ...

c) \(\frac{x+5}{x^2-5x}-\frac{x-5}{2x^2+10x}=\frac{x+25}{2x^2-50}\)

\(\Leftrightarrow\frac{2\left(x+5\right)^2}{2x\left(x-5\right)\left(x+5\right)}-\frac{\left(x-5\right)^2}{2x\left(x+5\right)\left(x-5\right)}=\frac{x\left(x+25\right)}{2x\left(x-5\right)\left(x+5\right)}\)

\(\Leftrightarrow2x^2+20x+50-x^2+10x-25=x^2+25x\)

\(\Leftrightarrow5x+25=0\)

\(\Leftrightarrow x=-5\)( ko t/m )

d) tương tự, ngại tính lắm

e) \(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)

\(\Leftrightarrow\frac{x^2+x+1}{x^3-1}-\frac{3x^2}{x^3-1}=\frac{2x\left(x-1\right)}{x^3-1}\)

\(\Leftrightarrow4x^2-3x-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(4x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(l\right)\\x=\frac{-1}{4}\left(c\right)\end{matrix}\right.\)

18 tháng 3 2019

a,  (2x+5)mũ 2=(x+2) mũ 2

=.> (2x+5) mũ 2-(x+2) mũ 2=0

=> (2x+5+x+2)x(2x+5-x-2)=0

=>(3x+7)x(x+3)=0

=>3x+7=0 hoặc x+3=0

3x+7=0=>x=-7/3

x+3=0 =>x=-3

vậy x=-7/3 hoặc x=-3

hok tot

14 tháng 4 2020

\(b.\frac{12}{x^2-4}-\frac{x+1}{x-2}+\frac{x+7}{x+2}=0\left(dkxd:x\ne\pm2\right)\\ \Leftrightarrow\frac{12}{x^2-4}-\frac{\left(x+1\right)\left(x+2\right)}{x^2-4}+\frac{\left(x+7\right)\left(x-2\right)}{x^2-4}=0\\\Leftrightarrow 12-x^2-3x-2+x^2+5x-14=0\\ \Leftrightarrow2x-4=0\\\Leftrightarrow 2\left(x-2\right)=0\\\Leftrightarrow x-2=0\\\Leftrightarrow x=2\left(ktmdk\right)\)

Vô nghiệm

14 tháng 4 2020

\(a.\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{16}{x^2-1}\left(dkxd:x\ne\pm1\right)\\\Leftrightarrow \frac{\left(x+1\right)^2}{x^2-1}-\frac{\left(x-1\right)^2}{x^2-1}=\frac{16}{x^2-1}\\\Leftrightarrow \left(x+1\right)^2-\left(x-1\right)^2=16\\\Leftrightarrow \left(x+1-x+1\right)\left(x+1+x-1\right)-16=0\\\Leftrightarrow 4x-16=0\\\Leftrightarrow 4\left(x-4\right)=0\\\Leftrightarrow x-4=0\\ \Leftrightarrow x=4\left(tmdk\right)\)