\(\frac{x}{5}\)=  \(\frac{y}{6}\);  \(\f...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2017

Ta có : \(\frac{x}{5}=\frac{y}{6}\Rightarrow\frac{x}{20}=\frac{y}{24}\)

            \(\frac{y}{8}=\frac{z}{7}\Rightarrow\frac{y}{24}=\frac{z}{21}\)

Nên : \(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}\)

Ta có : \(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{138}{23}=6\)

Nên : \(x=6.20=120\)

          \(y=6.24=144\)

          \(z=6.21=126\)

Vậy .................................

20 tháng 8 2017

Ta có  : \(\frac{x}{5}=\frac{y}{6}=\frac{x}{5.4}=\frac{y}{6.4}=\frac{x}{20}=\frac{y}{24}\left(1\right)\)

    \(\frac{y}{8}=\frac{z}{7}=\frac{y}{8.3}=\frac{z}{7.3}=\frac{y}{24}=\frac{z}{21}\left(2\right)\)

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{20}=\frac{y}{24}=\frac{z}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có : 

\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{138}{23}=6\)

\(\Rightarrow\frac{x}{20}=6\Rightarrow x=120\)

      \(\frac{y}{24}=6\Rightarrow y=144\)

       \(\frac{z}{21}=6\Rightarrow z=126\)

Vậy x = 120 ; y = 144 ; z = 126

13 tháng 11 2016

1    Ta có x -24 = y

Suy ra x - y = 24

               Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

      x/7 = y/3 = x-y/7-3 =24/4=6

suy ra x= 42

           y = 18

13 tháng 11 2016

thank you

18 tháng 6 2019

#)Giải :

a) Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)

\(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}\Rightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}}\)

Vậy x = 45; y = 60; z = 84

b) Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=2\)

\(\Rightarrow\hept{\begin{cases}y+z+1=2x\left(1\right)\\x+z+2=2y\left(2\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y-3=2z\left(3\right)\\x+y+z=\frac{1}{2}\left(4\right)\end{cases}}\)

\(\left(+\right)x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-z\)

Thay (1) vào (+) ta được :

\(\frac{1}{2}-x+1=2x\Rightarrow\frac{3}{2}=3x\Rightarrow x=\frac{1}{2}\)

\(\left(+_2\right)x+y+z=\frac{1}{2}\Rightarrow x+z=\frac{1}{2}-y\)

Thay (2) và (+2) ta được :

\(\frac{1}{2}-y+2=2y\Rightarrow\frac{5}{2}=3y\Rightarrow y=\frac{5}{6}\)

\(\left(+_3\right)x+y+z=\frac{1}{2}+\frac{5}{6}+z=\frac{1}{2}\Rightarrow\frac{4}{3}+z=\frac{1}{2}\Rightarrow z=\frac{-5}{6}\)

Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}\)

18 tháng 6 2019

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k;y=3k;z=5k\)

\(\Rightarrow xyz=2k\cdot3k\cdot5k=30k^3\)

Mà \(xyz=810\Rightarrow30k^3=810\)

\(\Rightarrow k^3=27\)

\(\Rightarrow k=3\)

Thay vào tìm x,,z.

3 tháng 9 2018

a. \(2x=3y=5z\)  và  \(x-y+z=-33\)

Theo đề bài ta có: \(2x=3y=5z\)\(\Rightarrow\)\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)

Áp dụng tính chất của dãy các tỉ số bằng nhau

\(\Rightarrow\)\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x-y+z}{2-3+5}=-\frac{33}{4}=-8,25\)

Suy ra:  \(\frac{x}{2}=-8,25\Rightarrow x=-8,25\times2=-16,5\)

             \(\frac{y}{3}=-8,25\Rightarrow y=-8,25\times3=-24,75\)

             \(\frac{z}{5}=-8,25\Rightarrow z=-8,25\times5=-41,25\)

Vậy x=-16,5; y=-24,75; z=-41,25.

b.  \(\frac{x}{5}=\frac{y}{6}\)\(\frac{y}{8}=\frac{z}{7}\) và  \(x+y-z=69\)

Theo đề bài ta có: \(\frac{x}{5}=\frac{y}{6}\Rightarrow\frac{x}{5}\times\frac{1}{8}=\frac{y}{6}\times\frac{1}{8}\Rightarrow\frac{x}{40}=\frac{y}{48}\)(1)

                            \(\frac{y}{8}=\frac{z}{7}\Rightarrow\frac{y}{8}\times\frac{1}{6}=\frac{z}{7}\times\frac{1}{6}\Rightarrow\frac{y}{48}=\frac{z}{42}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{x}{40}=\frac{y}{48}=\frac{z}{42}\)

Áp dụng tính chất của dãy các tỉ số bằng nhau

\(\Rightarrow\frac{x}{40}=\frac{y}{48}=\frac{z}{42}=\frac{x+y-z}{40+48-42}=\frac{69}{46}=\frac{3}{2}\)

Suy ra:  \(\frac{x}{40}=\frac{3}{2}\Rightarrow x=\frac{40\times3}{2}=60\)

             \(\frac{y}{48}=\frac{3}{2}\Rightarrow y=\frac{48\times3}{2}=72\)

             \(\frac{z}{42}=\frac{3}{2}\Rightarrow z=\frac{42\times3}{2}=63\)

Vậy x=60; y=72; z=63.

31 tháng 7 2017

a) Ta thấy:
\(\frac{x}{2}=\frac{y}{3}\)\(\Rightarrow\frac{x}{2}\cdot\frac{3}{5}=\frac{y}{3}\cdot\frac{3}{5}\)\(\Rightarrow\frac{3x}{10}=\frac{y}{5}\)
Mà \(\frac{y}{5}=\frac{z}{6}\) nên ta có biểu thức: \(\frac{3x}{10}=\frac{y}{5}=\frac{z}{6}\)    ( 1 )
Biểu thức ( 1 ) tương đương với:
\(\frac{3x}{10}=\frac{3y}{15}=\frac{3z}{18}=\frac{3x+3y+3z}{10+15+18}=\frac{3\left(x+y+z\right)}{43}=\frac{3\cdot43}{43}=3\)
Khi đó:
\(\frac{3x}{10}=3\)                         \(\Rightarrow x=\frac{3\cdot10}{3}=10\)
\(\frac{3y}{15}=3\)\(\Rightarrow\frac{y}{5}=3\) \(\Rightarrow y=3\cdot5=15\)
\(\frac{3z}{18}=3\)\(\Rightarrow\frac{z}{6}=3\) \(\Rightarrow z=3\cdot6=18\)

31 tháng 7 2017

a,  Nhân cả hai vế cho 5, ta được: X/10 = Y/15 

Tương tự ta có:                          Y/15 = Z/18  

Do đó: X/10 = Z/18 (=Y/15)

Theo đề bài, ta có: (X+Y+Z)/(10+15+18) = 43/43 = 1

                            X/10=1 => X=10

                            Y/15=1 => Y=15

                            Z/18=1 => Z=18

                         

26 tháng 7 2017

Áp dụng tính chất của dãy tỉ số bằng nhau, ta  có :

\(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z+7}{5}=\frac{\left(x-1\right)+\left(y-2\right)-\left(z+7\right)}{3+4-5}=\frac{-2}{2}=-1\)

\(\Rightarrow x=-2;y=-2;z=-12\)

26 tháng 7 2017

a)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{5}=\frac{x+1+y+2+z+3}{3+4+5}=\frac{24}{12}=2\)

\(\Rightarrow x=5;y=6;z=7\)