Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tớ ko bt lm abc , tớ lm d thôi nha , thứ lỗi
\(\frac{5}{2x-3}-\frac{1}{x+2}=\frac{5}{x-6}-\frac{7}{2x-1}\)
\(\frac{3x+13}{2x^2+x-6}=\frac{5}{x-6}+\frac{7}{1-2x}\)
\(\frac{3x+13}{\left(x+2\right)\left(2x-3\right)}=\frac{3x+37}{\left(x-6\right)\left(2x-1\right)}\)
\(\frac{10-9x}{-4x^3+32x^2-51x+18}=0\)
\(\Rightarrow\orbr{\begin{cases}x=-3\\x=\frac{10}{9}\end{cases}}\)
1) dkxd:
\(x\ne0;x\ne-3\\ \frac{x-5}{x^2+3x}+\frac{6}{x+3}=\frac{x-5}{x\left(x+3\right)}+\frac{6}{x+3}\\ =\frac{x-5+6x}{x\left(x+3\right)}\\ =\frac{7x-5}{x\left(x+3\right)}\)
2) dkxd:
\(x\ne1;x\ne-1\\ \\ \frac{1}{1-x}+\frac{x}{x+1}+\frac{z}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}\\ \\ =\frac{x+1+1-x^2}{1-x^2}+\frac{z}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}\\ \\ =\frac{-\left(1+x^2\right)\left(x^2-x-2\right)+z-zx^2}{1-x^4}+\frac{4}{1+x^4}+\frac{8}{1+x^8}\\ \\ =-\frac{\left(1+x^4\right)\left(x^4+x^3+x^2+x+2+z-zx^2\right)+4-4x^4}{1-x^8}+\frac{8}{1+x^8}=...\)
\(ĐKXĐ:x\ne3;x\ne5;x\ne4;x\ne6\)
\(\frac{x}{x-3}-\frac{x}{x-5}=\frac{x}{x-4}-\frac{x}{x-6}\)
\(\Rightarrow\frac{x}{x-3}-\frac{x}{x-5}-\frac{x}{x-4}+\frac{x}{x-6}=0\)
\(\Rightarrow x\left(\frac{1}{x-3}-\frac{1}{x-5}-\frac{1}{x-4}+\frac{1}{x-6}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\left(tm\right)\\\frac{1}{x-3}-\frac{1}{x-5}-\frac{1}{x-4}+\frac{1}{x-6}=0\left(1\right)\end{cases}}\)
\(\left(1\right)\Rightarrow\frac{1}{x-3}+\frac{1}{x-6}=\frac{1}{x-5}+\frac{1}{x-4}\)
\(\Rightarrow\frac{2x-9}{\left(x-3\right)\left(x-6\right)}=\frac{2x-9}{\left(x-5\right)\left(x-4\right)}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{9}{2}\left(tm\right)\\\left(x-3\right)\left(x-6\right)=\left(x-5\right)\left(x-4\right)\left(2\right)\end{cases}}\)
\(\left(2\right)\Leftrightarrow x^2-9x+18=x^2-9x+20\)
\(\Leftrightarrow0=2\left(L\right)\)
Vậy pt có 2 nghiệm \(\left\{0;\frac{9}{2}\right\}\)
\(\frac{3x-7}{5}=\frac{2x-1}{3}\)
\(\Leftrightarrow9x-21=10x-5\)
\(\Leftrightarrow-x=16\Leftrightarrow x=-16\)
\(\frac{4x-7}{12}-x=\frac{3x}{8}\)
\(\Leftrightarrow\frac{4x-7-12x}{12}=\frac{3x}{8}\)
\(\Leftrightarrow\frac{-7-8x}{12}=\frac{3x}{8}\)
\(\Leftrightarrow-56-64x=36x\)
\(\Leftrightarrow-56=100x\Leftrightarrow x=\frac{-14}{25}\)
\(\frac{x-2009}{1234}+\frac{x-2009}{5678}-\frac{x-2009}{197}=0\)
\(\Leftrightarrow\left(x-2019\right)\left(\frac{1}{1234}+\frac{1}{5678}-\frac{1}{197}\right)=0\)
Vì \(\left(\frac{1}{1234}+\frac{1}{5678}-\frac{1}{197}\right)\ne0\)nên x - 2019 = 0
Vậy x = 2019
\(\frac{5x-8}{3}=\frac{1-3x}{2}\)
\(\Leftrightarrow10x-16=3-9x\)
\(\Leftrightarrow19x=19\Leftrightarrow x=1\)
\(bt=\frac{1\left(1+x\right)}{\left(1-x\right)\left(1+x\right)}+\frac{1\left(1-x\right)}{\left(1+x\right)\left(1-x\right)}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{2}{1-x^2}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{2\left(1+x^2\right)}{\left(1-x^2\right)\left(1+x^2\right)}+\frac{2\left(1-x^2\right)}{\left(1+x^2\right)\left(1-x^2\right)}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{4}{1-x^4}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{8}{1-x^8}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{16}{1-x^{16}}+\frac{16}{1+x^{16}}\)
\(=\frac{32}{1-x^{32}}\)
Chúc bạn làm bài tốt
1.
\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)
\(MC:12\)
Quy đồng :
\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)
\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)
\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)
\(\Leftrightarrow6x+9-3x=-4-9+16\)
\(\Leftrightarrow-7x=3\)
\(\Leftrightarrow x=\frac{-3}{7}\)
2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)
\(MC:20\)
Quy đồng :
\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)
\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)
\(\Leftrightarrow30x+15-20=15x-2\)
\(\Leftrightarrow15x=3\)
\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)
\(ĐKXĐ:x\ne1;-1;2;-2\)
\(\frac{\left(x+4\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{\left(x-4\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{\left(x-8\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{\left(x+8\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{8}{3}\)
\(\Leftrightarrow\frac{x^2+x+4x+4+x^2-x-4x+4}{x^2-1}=\frac{x^2-2x-8x+16+x^2+2x+8x+16}{x^2-4}-\frac{8}{3}\)
\(\Leftrightarrow\frac{2x^2+8}{x^2-1}=\frac{2x^2+32}{x^2-4}-\frac{8}{3}\)
\(\Leftrightarrow\frac{2x^2+8}{x^2-1}=\frac{3\left(2x^2+32\right)}{3\left(x^2-4\right)}-\frac{8\left(x^2-4\right)}{3\left(x^2-4\right)}\)
\(\Leftrightarrow\frac{2x^2+8}{x^2-1}=\frac{9x^2+96-8x^2+32}{3\left(x^2-4\right)}\)
\(\Leftrightarrow\frac{2x^2+8}{x^2-1}=\frac{x^2+128}{3\left(x^2-4\right)}\)
\(\Leftrightarrow3\left(x^2-4\right)\left(2x^2+8\right)=\left(x^2+128\right)\left(x^2-1\right)\)
\(\Leftrightarrow9x^4+24x^2-24x^2-96=x^4-x^2+128x^2-128\)
\(\Leftrightarrow9x^4+24x^2-24x^2-x^4+x^2+128x^2=-128+96\)
\(\Leftrightarrow8x^4+129x^2=-32\)
\(\Leftrightarrow8x^4+129x^2+32=0\)
\(\Leftrightarrow x=\frac{1}{2}\left(tmđkxđ\right)\)
bạn sai r bạn ơi cái chỗ chuyển vế dòng tương đương số 8 : x^4 - x^2 + 128x^2 - 128 đáng ra sau khi chuyển px là -x^4 +x^2 - 128x^2 + 128 chứ sao lại là x^4 + x^2 + 128x^2 +128