Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+\frac{9x^3}{\left(x+3\right)^2}=40\left(x\ne-3\right)\)
\(\Leftrightarrow x^2+\left(x+3\right)^2+9x^2=40\left(x+3\right)^2\)
\(\Leftrightarrow x^4+6x^3+18x^2=40x^2+240x+360\)
\(\Leftrightarrow x^4+6x^3-22x^2-240x-360=0\)
\(\Leftrightarrow\left(x^3+10x+30\right)\left(x-6\right)\left(x+2\right)=0\)
Khi x-6=0 hoặc x+2=0 <=> x=6 hoặc x=-2
Khi \(x^3+10x+30=0\)
\(x=\frac{-10+2\sqrt{5}}{2};x=\frac{-10-2\sqrt{5}}{2}\)
Hơi khó hiểu 1 chút, bạn cố gắng nhé
\(x^2+\frac{9x^2}{\left(x+3\right)^2}=40^{\left(1\right)}\)
\(ĐKXĐ:x\ne-3\)
\(\left(1\right)\Leftrightarrow x^2-2.x.\frac{3x}{x+3}+\frac{\left(3x\right)^2}{\left(x+3\right)^2}+\frac{6x^2}{x+3}=40\)
\(\Leftrightarrow\left(x-\frac{3x}{x+3}\right)^2+\frac{6x^2}{x+3}=40\)
\(\Leftrightarrow\left(\frac{x^2}{x+3}\right)^2+6.\frac{x^2}{x+3}=40\)
Đặt \(t=\frac{x^2}{x+3}\)ta có
\(t^2+6t=40\)
\(\Leftrightarrow\left(t-4\right)\left(t+10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t-4=0\\t+10=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}t=4\\t=-10\end{cases}}\)
+) Với t =4 ta có
\(\frac{x^2}{x+3}=4\)
\(\Rightarrow4\left(x+3\right)=x^2\)
\(\Leftrightarrow x^2-4x-12=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x+2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=6\left(tm\right)\\x=-2\left(tm\right)\end{cases}}\)
+) với x=-10 ta có
\(\frac{x^2}{x+3}=-10\)
\(\Rightarrow-10\left(x+3\right)=x^2\)
\(\Leftrightarrow x^2+10x+30=0\)
\(\Leftrightarrow\left(x+5\right)^2=-5\)
Phương trình vô nghiệm
Vậy............................
Đặt \(x^{2\:}-2x+2=t\)
Được phương trình: \(\frac{t}{t+1}+\frac{t-1}{t}=\frac{1}{6}\)
Quy đồng và khử mẫu được: \(12t^2-6=t^2+t\)
<=> \(11t^2-t=6\)
r á. đến đó thỳ hk lm đk n~. pn xem lại đề đy na @@
Gợi ý :
Bài 1 : Cộng thêm 1 vào 3 phân thức đầu, trừ cho 3 ở phân thức thứ 4, có nhân tử chung là (x+2020)
Bài 2 : Trừ mỗi phân thức cho 1, chuyển vế và có nhân tử chung là (x-2021)
Bài 3 : Phân thức thứ nhất trừ đi 1, phân thức hai trù đi 2, phân thức ba trừ đi 3, phân thức bốn trừ cho 4, phân thức 5 trừ cho 5. Có nhân tử chung là (x-100)
bài 3
\(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15.\)
=>\(\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-15}{17}-5=0\)
=>\(\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)
=>\(\left(x-100\right).\left(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\right)=0\)
=>(x-100)=0 do \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\)
=> x=100
nếu tìm x thì mk làm đc:
\(\frac{x}{3}+\frac{2x-6}{6}=2-\frac{x}{3}\)
\(\Leftrightarrow\frac{2x}{6}+\frac{2x-6}{6}=\frac{6}{x}-\frac{x}{3}\)
\(\Leftrightarrow\frac{2x+2x-6}{6}=\frac{6-x}{3}\)
\(\Leftrightarrow\frac{2x+2x-6}{6}=\frac{2\left(6-x\right)}{2.3}=\frac{12-2x}{6}\)
<=>2x+2x-6=12-2x
<=>4x-6=12-2x
<=>4x-2x=12-6
<=>2x=6<=>x=3
Vậy x=3
c: \(=\dfrac{1}{3x-2}-\dfrac{4}{3x+2}+\dfrac{3x-6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{3x+2-12x+8+3x-6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{-6x+4}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{-2}{3x+2}\)
d: \(=\dfrac{x^2-4-x^2+10}{x+2}=\dfrac{6}{x+2}\)
e: \(=\dfrac{1}{2\left(x-y\right)}-\dfrac{1}{2\left(x+y\right)}-\dfrac{y}{\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{x+y-x+y-2y}{2\left(x-y\right)\left(x+y\right)}=\dfrac{0}{2\left(x-y\right)\left(x+y\right)}=0\)
\(\frac{x+2}{x+3}-\frac{x+1}{x-1}=\frac{4}{\left(x-1\right)\left(x+3\right)}\left(x\ne-3;x\ne1\right)\)
\(\Leftrightarrow\frac{x+2}{x+3}-\frac{x+1}{x-1}-\frac{4}{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(x-1\right)}{\left(x+3\right)\left(x-1\right)}-\frac{\left(x+1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\frac{4}{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{x^2+x-2}{\left(x+3\right)\left(x-1\right)}-\frac{x^2+4x+3}{\left(x-1\right)\left(x+3\right)}-\frac{4}{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{x^2+x-2-x^2-4x-3-4}{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{-3x-9}{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{-3\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{-3}{x-1}=0\)
=> PT vô nghiệm
quy đồng ,bỏ mẫu ,rút gọn =X2 +X=0
X=0 và X=-1
11111111111111111111111111111111111111111111111111111111111111111111111111111111
<=> \(\frac{\left(x+2\right)\cdot\left(x+2\right)}{x\cdot\left(x+2\right)}\)-\(\frac{x^2+5x+4}{x\left(x+2\right)}\)=\(\frac{x\left(x+2\right)}{\left(x+2\right)\cdot\left(x+2\right)}\)
=> x^2+4x+4-x^2-5x-4=x^2+2x
=> -x=x^2+2x
=> x^2+3x=0
=>x*(x+3)=0
thiếu bước nữa nha:
x = 15 . 10 = 150