\(\frac{x}{40}-\frac{x}{50}=\frac{3}{4}\)  giải hộ mình câu này với ( đang làm bài toán =...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2020

\(x^2+\frac{9x^3}{\left(x+3\right)^2}=40\left(x\ne-3\right)\)

\(\Leftrightarrow x^2+\left(x+3\right)^2+9x^2=40\left(x+3\right)^2\)

\(\Leftrightarrow x^4+6x^3+18x^2=40x^2+240x+360\)

\(\Leftrightarrow x^4+6x^3-22x^2-240x-360=0\)

\(\Leftrightarrow\left(x^3+10x+30\right)\left(x-6\right)\left(x+2\right)=0\)

Khi x-6=0  hoặc x+2=0 <=> x=6 hoặc x=-2

Khi \(x^3+10x+30=0\)

\(x=\frac{-10+2\sqrt{5}}{2};x=\frac{-10-2\sqrt{5}}{2}\)

Hơi khó hiểu 1 chút, bạn cố gắng nhé

10 tháng 3 2020

\(x^2+\frac{9x^2}{\left(x+3\right)^2}=40^{\left(1\right)}\)

\(ĐKXĐ:x\ne-3\)

\(\left(1\right)\Leftrightarrow x^2-2.x.\frac{3x}{x+3}+\frac{\left(3x\right)^2}{\left(x+3\right)^2}+\frac{6x^2}{x+3}=40\)

\(\Leftrightarrow\left(x-\frac{3x}{x+3}\right)^2+\frac{6x^2}{x+3}=40\)

\(\Leftrightarrow\left(\frac{x^2}{x+3}\right)^2+6.\frac{x^2}{x+3}=40\)

Đặt \(t=\frac{x^2}{x+3}\)ta có 

\(t^2+6t=40\)

\(\Leftrightarrow\left(t-4\right)\left(t+10\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t-4=0\\t+10=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}t=4\\t=-10\end{cases}}\)

+) Với t =4 ta có 

\(\frac{x^2}{x+3}=4\)

\(\Rightarrow4\left(x+3\right)=x^2\)

\(\Leftrightarrow x^2-4x-12=0\)

\(\Leftrightarrow\left(x-6\right)\left(x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x+2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=6\left(tm\right)\\x=-2\left(tm\right)\end{cases}}\)

+) với x=-10 ta có 

\(\frac{x^2}{x+3}=-10\)

\(\Rightarrow-10\left(x+3\right)=x^2\)

\(\Leftrightarrow x^2+10x+30=0\)

\(\Leftrightarrow\left(x+5\right)^2=-5\)

Phương trình vô nghiệm 

Vậy............................

28 tháng 1 2016

Đặt \(x^{2\:}-2x+2=t\)

Được phương trình: \(\frac{t}{t+1}+\frac{t-1}{t}=\frac{1}{6}\)

Quy đồng và khử mẫu được: \(12t^2-6=t^2+t\)

<=> \(11t^2-t=6\)

r á. đến đó thỳ hk lm đk n~. pn xem lại đề đy na @@

28 tháng 1 2016

thiếu xíu: đặt x^2-2x+2=t

7 tháng 3 2020

Gợi ý :

Bài 1 : Cộng thêm 1 vào 3 phân thức đầu, trừ cho 3 ở phân thức thứ 4, có nhân tử chung là (x+2020)

Bài 2 : Trừ mỗi phân thức cho 1, chuyển vế và có nhân tử chung là (x-2021)

Bài 3 : Phân thức thứ nhất trừ đi 1, phân thức hai trù đi 2, phân thức ba trừ đi 3, phân thức bốn trừ cho 4, phân thức 5 trừ cho 5. Có nhân tử chung là (x-100)

7 tháng 3 2020

bài 3

\(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15.\)

=>\(\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-15}{17}-5=0\)

=>\(\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)

=>\(\left(x-100\right).\left(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\right)=0\)

=>(x-100)=0 do \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\)

=> x=100

28 tháng 2 2016

x=3n bạn ak

28 tháng 2 2016

nếu tìm x thì mk làm đc:

\(\frac{x}{3}+\frac{2x-6}{6}=2-\frac{x}{3}\)

\(\Leftrightarrow\frac{2x}{6}+\frac{2x-6}{6}=\frac{6}{x}-\frac{x}{3}\)

\(\Leftrightarrow\frac{2x+2x-6}{6}=\frac{6-x}{3}\)

\(\Leftrightarrow\frac{2x+2x-6}{6}=\frac{2\left(6-x\right)}{2.3}=\frac{12-2x}{6}\)

<=>2x+2x-6=12-2x

<=>4x-6=12-2x

<=>4x-2x=12-6

<=>2x=6<=>x=3

Vậy x=3

c: \(=\dfrac{1}{3x-2}-\dfrac{4}{3x+2}+\dfrac{3x-6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{3x+2-12x+8+3x-6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{-6x+4}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{-2}{3x+2}\)

d: \(=\dfrac{x^2-4-x^2+10}{x+2}=\dfrac{6}{x+2}\)

e: \(=\dfrac{1}{2\left(x-y\right)}-\dfrac{1}{2\left(x+y\right)}-\dfrac{y}{\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{x+y-x+y-2y}{2\left(x-y\right)\left(x+y\right)}=\dfrac{0}{2\left(x-y\right)\left(x+y\right)}=0\)

10 tháng 3 2020

\(\frac{x+2}{x+3}-\frac{x+1}{x-1}=\frac{4}{\left(x-1\right)\left(x+3\right)}\left(x\ne-3;x\ne1\right)\)

\(\Leftrightarrow\frac{x+2}{x+3}-\frac{x+1}{x-1}-\frac{4}{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\frac{\left(x+2\right)\left(x-1\right)}{\left(x+3\right)\left(x-1\right)}-\frac{\left(x+1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\frac{4}{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\frac{x^2+x-2}{\left(x+3\right)\left(x-1\right)}-\frac{x^2+4x+3}{\left(x-1\right)\left(x+3\right)}-\frac{4}{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\frac{x^2+x-2-x^2-4x-3-4}{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\frac{-3x-9}{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\frac{-3\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\frac{-3}{x-1}=0\)

=> PT vô nghiệm

12 tháng 3 2016

quy đồng ,bỏ mẫu ,rút gọn =X2 +X=0

             X=0 và X=-1

11111111111111111111111111111111111111111111111111111111111111111111111111111111

12 tháng 3 2016

<=> \(\frac{\left(x+2\right)\cdot\left(x+2\right)}{x\cdot\left(x+2\right)}\)-\(\frac{x^2+5x+4}{x\left(x+2\right)}\)=\(\frac{x\left(x+2\right)}{\left(x+2\right)\cdot\left(x+2\right)}\)

=> x^2+4x+4-x^2-5x-4=x^2+2x

=> -x=x^2+2x

=> x^2+3x=0

=>x*(x+3)=0