\(\frac{x^3}{\sqrt{5-x}}+8x^2=40\)

Giúp mình bài này với !!!

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 11 2019

Chắc là bạn nhầm đề, với đề này thì ko giải được

Nếu sửa đề thành \(\frac{x^3}{\sqrt{5-x^2}}+8x^2=40\) thì có thể giải được:

\(\Leftrightarrow\frac{x^3}{\sqrt{5-x^2}}+8\left(x^2-5\right)=0\)

Đặt \(\sqrt{5-x^2}=a>0\Rightarrow x^2-5=-a^2\)

Phương trình trở thành:

\(\frac{x^3}{a}-8a^2=0\)

\(\Leftrightarrow x^3-8a^3=0\Leftrightarrow x^3=\left(2a\right)^3\)

\(\Leftrightarrow x=2a\Leftrightarrow2\sqrt{5-x^2}=x\) (\(x\ge0\))

\(\Leftrightarrow4\left(5-x^2\right)=x^2\)

\(\Leftrightarrow x^2=4\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\left(l\right)\end{matrix}\right.\)

25 tháng 9 2016

Tiếc quá 

mình chưa học đến

bik thì giúp cho

a).  \(\frac{1}{\sqrt{5-\sqrt{7}}}+\frac{\sqrt{5}}{\sqrt{5+\sqrt{7}}})-1\)

\(\Leftrightarrow\frac{1}{\sqrt{25-\sqrt{49}}}-1\)

\(\Leftrightarrow\frac{1}{\sqrt{25-7}}-1\)

\(\Leftrightarrow\frac{1}{\sqrt{18}}-1\)

\(\Leftrightarrow\frac{1}{3\sqrt{2}}-1\) 

ĐẾN ĐÂY BN QUY ĐỒNG LÀ ĐC

13 tháng 9 2019

ĐK: \(x\ge-7\)

PT \(\Leftrightarrow\left(\sqrt[3]{x-8}-\left(x-8\right)\right)+\left[\sqrt{x+7}-4\right]+\left(x-9\right)\left(x^2+x+2\right)=0\)

\(\Leftrightarrow\frac{-\left(x-9\right)\left(x-7\right)\left(x-8\right)}{\left(\sqrt[3]{x-8}\right)^2+\left(x-8\right)\sqrt[3]{x-8}+\left(x-8\right)^2}+\frac{x-9}{\sqrt{x+7}+4}+\left(x-9\right)\left(x^2+x+2\right)=0\)

\(\Leftrightarrow\left(x-9\right)\left[x^2+x+2+\frac{1}{\sqrt{x+7}+4}-\frac{\left(x-7\right)\left(x-8\right)}{\left(\sqrt[3]{x-8}\right)^2+\left(x-8\right)\sqrt[3]{x-8}+\left(x-8\right)^2}\right]=0\)

\(\Leftrightarrow x=9\) 

P/s:em chả biết đánh giá cái ngoặc to thế nào nữa:((((

12 tháng 9 2017

mọi người giúp mình với ạ,mai mình phải nộp rồi nhưng kô biết làm .Mong mn giúp đỡ!!!

5 tháng 10 2017

Bài dễ mà :
a, \(\sqrt{x+5}=x+15 \)
\(x+5=x^2+30x+225\)
\(x^2+29x+220=0\)
\(\left(x+14,5\right)^2+9,75=0\)
pt vô nghiệm

18 tháng 9 2020

B1:

\(C=\left(3-\sqrt{5}\right)\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\sqrt{3-\sqrt{5}}\)

\(=\sqrt{3-\sqrt{5}}.\sqrt{3+\sqrt{5}}\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)\)

\(=\sqrt{3^2-\left(\sqrt{5}\right)^2}\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)\)

\(=\sqrt{2}\left(\sqrt{3-\sqrt{5}}.\sqrt{2}+\sqrt{3+\sqrt{5}}.\sqrt{2}\right)\)

\(=\sqrt{2}\left(\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}\right)\)

\(=\sqrt{2}\left(\sqrt{\left(\sqrt{5}-1\right)^2}+\sqrt{\left(\sqrt{5}+1\right)^2}\right)\)

\(=\sqrt{2}\left(\sqrt{5}-1+\sqrt{5}+1\right)=2\sqrt{10}\)


 

23 tháng 5 2017

Thế vào thì bạn bấm máy ra thôi

25 tháng 7 2019

1, \(x^3=\left(7+\sqrt{\frac{49}{8}}\right)+\left(7-\sqrt{\frac{49}{8}}\right)+3x\sqrt[3]{\left(7+\sqrt{\frac{49}{8}}\right)\left(7-\sqrt{\frac{49}{8}}\right)}\)

\(=14+3x\cdot\frac{7}{2}=14+\frac{21x}{2}\)

\(\Leftrightarrow x^3-\frac{21}{2}x-14=0\)

Ta có: \(f\left(x\right)=\left(2x^3-21-29\right)^{2019}=\left[2\left(x^3-\frac{21}{2}x-14\right)-1\right]^{2019}=\left(-1\right)^{2019}=-1\)

2, ta có: \(1^3+2^3+...+n^3=\left(1+2+...+n\right)^2=\left[\frac{n\left(n+1\right)}{2}\right]^2\) (bạn tự cm)

Áp dụng công thức trên ta được n=2016

3, \(x=\frac{\sqrt[3]{17\sqrt{5}-38}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}=\frac{\sqrt[3]{\left(\sqrt{5}\right)^3-3.\left(\sqrt{5}\right)^2.2+3\sqrt{5}.2^2-2^3}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{9-2.3\sqrt{5}+5}}\)

\(=\frac{\sqrt[3]{\left(\sqrt{5}-2\right)^3}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{\left(3-\sqrt{5}\right)^2}}=\frac{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}{\sqrt{5}+3-\sqrt{5}}=\frac{5-4}{3}=\frac{1}{3}\)

Thay x=1/3 vào A ta được;

\(A=3x^3+8x^2+2=3.\left(\frac{1}{3}\right)^3+8.\left(\frac{1}{3}\right)^2+2=3\)

Bài 4

ÁP DỤNG BĐT CAUCHY 

là ra