
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


b) \(\) \(P=\frac{2-5\sqrt{x}}{\sqrt{x}+3}=\frac{2-5\sqrt{x}-15+15}{\sqrt{x}+3}\)
\(=\frac{\left(2+15\right)-\left(5\sqrt{x}+15\right)}{\sqrt{x}+3}\)
\(=\frac{17-5\cdot\left(\sqrt{x}+3\right)}{\sqrt{x}+3}=\frac{17}{\sqrt{x}+3}-5\)
vì \(\sqrt{x}\ge0\) nên \(\sqrt{x}+3\ge3\)
\(\Rightarrow\frac{1}{\sqrt{x}+3}\le\frac13\Rightarrow\frac{17}{\sqrt{x}+3}\le\frac{17}{3}\)
\(\Rightarrow\frac{17}{\sqrt{x}+3}-5\le\frac{17}{3}-5=\frac23\)
dấu = xảy ra khi x=0
vậy max P = \(\frac23\) khi x=0

a). \(\frac{1}{\sqrt{5-\sqrt{7}}}+\frac{\sqrt{5}}{\sqrt{5+\sqrt{7}}})-1\)
\(\Leftrightarrow\frac{1}{\sqrt{25-\sqrt{49}}}-1\)
\(\Leftrightarrow\frac{1}{\sqrt{25-7}}-1\)
\(\Leftrightarrow\frac{1}{\sqrt{18}}-1\)
\(\Leftrightarrow\frac{1}{3\sqrt{2}}-1\)
ĐẾN ĐÂY BN QUY ĐỒNG LÀ ĐC

ĐK: \(x\ge-7\)
PT \(\Leftrightarrow\left(\sqrt[3]{x-8}-\left(x-8\right)\right)+\left[\sqrt{x+7}-4\right]+\left(x-9\right)\left(x^2+x+2\right)=0\)
\(\Leftrightarrow\frac{-\left(x-9\right)\left(x-7\right)\left(x-8\right)}{\left(\sqrt[3]{x-8}\right)^2+\left(x-8\right)\sqrt[3]{x-8}+\left(x-8\right)^2}+\frac{x-9}{\sqrt{x+7}+4}+\left(x-9\right)\left(x^2+x+2\right)=0\)
\(\Leftrightarrow\left(x-9\right)\left[x^2+x+2+\frac{1}{\sqrt{x+7}+4}-\frac{\left(x-7\right)\left(x-8\right)}{\left(\sqrt[3]{x-8}\right)^2+\left(x-8\right)\sqrt[3]{x-8}+\left(x-8\right)^2}\right]=0\)
\(\Leftrightarrow x=9\)
P/s:em chả biết đánh giá cái ngoặc to thế nào nữa:((((

mọi người giúp mình với ạ,mai mình phải nộp rồi nhưng kô biết làm .Mong mn giúp đỡ!!!

B1:
\(C=\left(3-\sqrt{5}\right)\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\sqrt{3-\sqrt{5}}\)
\(=\sqrt{3-\sqrt{5}}.\sqrt{3+\sqrt{5}}\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)\)
\(=\sqrt{3^2-\left(\sqrt{5}\right)^2}\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)\)
\(=\sqrt{2}\left(\sqrt{3-\sqrt{5}}.\sqrt{2}+\sqrt{3+\sqrt{5}}.\sqrt{2}\right)\)
\(=\sqrt{2}\left(\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}\right)\)
\(=\sqrt{2}\left(\sqrt{\left(\sqrt{5}-1\right)^2}+\sqrt{\left(\sqrt{5}+1\right)^2}\right)\)
\(=\sqrt{2}\left(\sqrt{5}-1+\sqrt{5}+1\right)=2\sqrt{10}\)
Chắc là bạn nhầm đề, với đề này thì ko giải được
Nếu sửa đề thành \(\frac{x^3}{\sqrt{5-x^2}}+8x^2=40\) thì có thể giải được:
\(\Leftrightarrow\frac{x^3}{\sqrt{5-x^2}}+8\left(x^2-5\right)=0\)
Đặt \(\sqrt{5-x^2}=a>0\Rightarrow x^2-5=-a^2\)
Phương trình trở thành:
\(\frac{x^3}{a}-8a^2=0\)
\(\Leftrightarrow x^3-8a^3=0\Leftrightarrow x^3=\left(2a\right)^3\)
\(\Leftrightarrow x=2a\Leftrightarrow2\sqrt{5-x^2}=x\) (\(x\ge0\))
\(\Leftrightarrow4\left(5-x^2\right)=x^2\)
\(\Leftrightarrow x^2=4\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\left(l\right)\end{matrix}\right.\)