Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
x/2=y/3=z/5=k
Suy ra:x=2k;y=3k;z=5k (1)
có xyz=810.thay (1) vào biểu thức ta có
2k*3k*5k=810
k^3*(2*3*5)=810
k^3*30=810
k^3=27
Suy ra : k=3
x/2=3 thì x=6
y/3=3 thì y=9
z/5=3 thì z=15
CHÚC BẠN HỌC TỐT
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}=\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}\)\(=\frac{14}{56}=\frac{1}{4}\)
\(\Rightarrow x=\frac{1}{4}.4=1\)
\(y=\frac{1}{4}.16=4\)
\(z=\frac{1}{4}.36=9\)
Vậy: x=1, y=4, z=9
CHÚC BẠN HỌC TỐT VÀ VUI VẺ NHÉ!!!
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}=\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}\)
\(\Rightarrow\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{z}{6}\)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x^2+y^2+z}{4+16+6}=\frac{14}{26}=\frac{7}{13}\)
\(\hept{\begin{cases}\frac{x^2}{4}=\frac{7}{13}\Rightarrow x=\sqrt{\frac{28}{13}}\\\frac{y^2}{16}=\frac{7}{13}\Rightarrow y=\sqrt{\frac{112}{13}}\\\frac{z}{6}=\frac{7}{13}\Rightarrow z=\frac{42}{13}\end{cases}}\)
Vậy ....
![](https://rs.olm.vn/images/avt/0.png?1311)
theo bài ra ta có \(\frac{x^3}{8}\)=\(\frac{y^3}{64}\)=\(\frac{z^3}{126}\)=>\(\frac{x^2}{4}\)=\(\frac{y^2}{16}\)=\(\frac{z^2}{36}\) và \(x^2\)+\(y^2\)+\(z^2\)=19
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x^2}{4}\)=\(\frac{y^2}{16}\)=\(\frac{z^2}{36}\)=\(\frac{x^2+y^2+z^2}{4+16+36}\)=\(\frac{19}{56}\)
lúc đó: \(\frac{x^2}{4}\)=\(\frac{19}{56}\)=>\(x^2\)=\(\frac{19}{14}\)=>x=\(\pm\sqrt{\frac{19}{14}}\)
\(\frac{y^2}{16}\)=\(\frac{19}{56}\)=>\(y^2\)=\(\frac{38}{7}\)=>\(\pm\sqrt{\frac{38}{7}}\)
\(\frac{z^2}{36}\)=\(\frac{19}{56}\)=>\(z^2\)=\(\frac{171}{14}\)=>\(\pm\sqrt{\frac{171}{14}}\)
vậy \(\left\{{}\begin{matrix}x=\frac{19}{14}\\y=\frac{38}{7}\\z=\frac{171}{14}\end{matrix}\right.\)hoặc \(\left\{{}\begin{matrix}x=-\frac{19}{14}\\y=-\frac{38}{7}\\z=-\frac{171}{14}\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) vì x/2=y/3=> x/8=y/12
y/4=z/5=>y/12=z/15
từ hai cái trên nên x/8=y/12=z/15=> x^2/64=y^2/144=z^2/225 và x^2-y^2=-80
Áp dụng t/c dãy tỉ số bằng nhau ta được
x^2/64=y^2/144=z^2/225=x^2-y^2/64-144=-80/-80=1
+) x=8
+)y=12
+)z=15
cái dưới chỉ cần nhân hệ số vào và làm tương tự nhé e.
\(a,\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\) và \(x^2-y^2=-80\)
Ta có : \(\frac{x}{8}=\frac{y}{12};\frac{y}{12}=\frac{z}{20}\)
\(\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{20}\Rightarrow\frac{x^2}{64}=\frac{y^2}{144}=\frac{z}{20}\)
Mà \(x^2-y^2=-80\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{64}=\frac{y^2}{144}=\frac{z}{20}=\frac{x^2-y^2}{64-144}=\frac{-80}{-80}=1\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x^2}{64}=1\\\frac{y^2}{144}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=64\\y^2=144\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm8\\y=\pm12\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\) => \(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\) => \(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)
Áp dụng t/c chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
=> \(\hept{\begin{cases}\frac{x^2}{4}=\frac{1}{4}\\\frac{y^2}{16}=\frac{1}{4}\\\frac{z^2}{36}=\frac{1}{4}\end{cases}}\) => \(\hept{\begin{cases}x^2=1\\y^2=4\\z^3=9\end{cases}}\) => \(\hept{\begin{cases}x=\pm1\\y=\pm2\\z=\pm3\end{cases}}\)
Vậy ...
Ta có : \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}=>\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=>\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)
Ấp dụng tc dãy tỉ số bằng nhau ta có : \(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
\(=>\hept{\begin{cases}\frac{x^2}{4}=\frac{1}{4}\\\frac{y^2}{16}=\frac{1}{4}\\\frac{z^2}{36}=\frac{1}{4}\end{cases}=>\hept{\begin{cases}x^2=1\\y^2=4\\z^2=9\end{cases}=>\hept{\begin{cases}x=\pm1\\y=\pm2\\z=\pm3\end{cases}}}}\)
Vậy \(x=\pm1;y=\pm2;z=\pm3\)
????