Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không chép lại đề nhé:
\(1A=\left(\frac{x\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right)\)
\(=\frac{x+3}{x^2+9}:\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\)
\(=\frac{x+3}{x^2+9}.\frac{\left(x-3\right)\left(x^2+9\right)}{\left(x-3\right)^2}\)
\(=\frac{x+3}{x-3}\)
b/ Với x > 0 thì P không xác định khi x = 3 (vì mẫu sẽ = 0)
c/ \(A=\frac{x+3}{x-3}=1+\frac{6}{x-3}\)
Để A nguyên thì (x - 3) phải là ước nguyên của 6 hay
(x - 3) \(\in\)(- 1; - 2; - 3, - 6; 1; 2; 3; 6)
Thế vào sẽ tìm được A
ĐKXĐ thì b tự làm nhé
a) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)\left(x+2\right)=27\)
\(\Rightarrow x^3+3^3-x\left(x^2-4\right)=27\)
\(\Rightarrow x^3+27-x^3+4x=27\)
\(\Rightarrow27+4x=27\)
\(\Rightarrow4x=0\)
\(\Rightarrow x=0\)
b) \(2x^2+7x+3=0\)
\(\Rightarrow2x^2+x+6x+3=0\)
\(\Rightarrow x\left(2x+1\right)+3\left(2x+1\right)=0\)
\(\Rightarrow\left(2x+1\right)\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x+1=0\\x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=-1\\x=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-3\end{matrix}\right.\)
a)12x-9-4x2=0
\(\Leftrightarrow-\left(2x-3\right)^2=0\)
\(\Leftrightarrow2x-3=0\\ \Leftrightarrow x=\dfrac{3}{2}\)
b) x+x2-x3-x4 =0
\(\Leftrightarrow x\left(1-x^2\right)+x^2\left(1-x^2\right)=0\)
\(\Leftrightarrow x\left(1-x\right)\left(x+1\right)^2=0\)
=> x=0 hoặc x=1 hoặc x=-1
c)
\(\frac{2}{x-3}\)-\(\frac{27}{x^3-27}\)=\(\frac{3}{x^2+3x+9}\)
\(\frac{2}{x-3}\)-\(\frac{27}{\left(x-3\right)\left(x^2+3x+9\right)}\)=\(\frac{3}{x^2+3x+9}\)
\(\frac{2\left(x^2+3x+9\right)}{\left(x-3\right)\left(x^2+3x+9\right)}\)-\(\frac{27}{\left(x-3\right)\left(x^2+3x+9\right)}\)=\(\frac{3\left(x-3\right)}{\left(x-3\right)\left(x^2+3x+9\right)}\)
2x2+6x+18-27=3x-9 2x2+6x-3x=27-18-9 2x2+3x=0 x(2x+3)=0 x=0 hoặc 2x+3=0 x=0 hoặc x=\(\frac{-3}{2}\)\(A=\left(\frac{-\left(x-3\right)}{\left(x+3\right)}.\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}+\frac{x}{x+3}\right).\left(\frac{x+3}{3x^2}\right)\)
\(=\left(-1+\frac{x}{x+3}\right)\left(\frac{x+3}{3x^2}\right)=\frac{-3}{\left(x+3\right)}.\frac{\left(x+3\right)}{3x^2}=\frac{-1}{x^2}\)
\(A< 0\Rightarrow\frac{-1}{x^2}< 0\Rightarrow-1< 0\) (luôn đúng)
Vậy \(x\ne0;x\ne\pm3\) thì \(A< 0\)
Câu 1:
a. \(\frac{1}{4}x^2-64\)
\(=\left(\frac{1}{2}x\right)^2-8^2\)
\(=\left(\frac{1}{2}x+8\right)\left(\frac{1}{2}x-8\right)\)
b. \(\frac{1}{27}+x^3\)
\(=\left(\frac{1}{3}\right)^3+x^3\)
\(=\left(\frac{1}{3}+x\right)\left(\frac{1}{9}-\frac{1}{3}x+x^2\right)\)
c. \(\left(a+b\right)^3-\left(a-b\right)^3\)
\(=\left(a^3+3a^2b+3ab^2+b^3\right)-\left(a^3-3a^2b+3ab^2-b^3\right)\)
\(=a^3+3a^2b+3ab^2+b^3-a^3+3a^2b+3ab^2+b^3\)
\(=6a^2b+2b^3\)
\(=2b\left(3a^2+b^2\right)\)
\(\frac{x^3-27}{x^2-9}=0\)
\(\Leftrightarrow x^3-27=0\)
\(\Leftrightarrow x^3=27\)
\(\Leftrightarrow x=\pm3\)
ĐKXĐ :\(x\ne\pm3\)