\(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x\left(x-2\right)}\)

Giải pt chứa ẩn ở mẫu

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2017

\(\Leftrightarrow\hept{\begin{cases}x\left(x+2\right)-\left(x-2\right)=2\\x\left(x-2\right)\ne0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0,1\\x\ne0,2\end{cases}}\Rightarrow x=1\)

11 tháng 2 2020
https://i.imgur.com/uyRfZGK.jpg
11 tháng 2 2020

a, Ta có: \(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\)

\(\Leftrightarrow\frac{x+2}{x-2}-\frac{2}{x^2-2x}=\frac{1}{x}\)

\(Đkxđ:\left\{{}\begin{matrix}x\ne2\\x\ne0\end{matrix}\right.\)

\(Pt\Leftrightarrow x\left(x+2\right)-2=x-2\)

\(\Leftrightarrow x^2+x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=-1\left(tmđk\right)\end{matrix}\right.\)

Vậy .........

\(b,Đkxđ:x\ne-5\)

Ta có: \(\frac{2x-5}{x+5}=3\)

\(\Leftrightarrow2x-5=3\left(x+5\right)\)

\(\Leftrightarrow x=20\left(tmđk\right)\)

Vậy .........

c, \(Đkxđ:x\ne3\)

Ta có: \(\frac{\left(x^2+2x\right)-\left(3x+6\right)}{x-3}=0\)

\(\Leftrightarrow x^2+2x-3x-6=0\)

\(\Leftrightarrow x^2-x-6=0\)

\(\Leftrightarrow x^2-3x+2x-6=0\)

\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\left(tm\right)\\x=3\left(ktmđk\right)\end{matrix}\right.\)

Vậy ............

10 tháng 2 2020

Mình làm 2 câu ab thôi nhé!Cách giải các bài tập này đều như nhau!

Giải:

a) \(\frac{x-9}{x}-\frac{x}{x-9}=0\text{⇔}\frac{x-9}{x}=\frac{x}{x-9}\) (ĐKXĐ: x ≠ 0, x ≠ 9)

⇔ (x - 9)2 = x2 ⇔ (x - 9)2 - x2 = 0 ⇔ -9(2x + 9) = 0 ⇔ 2x + 9 = 0 ⇔ x = \(\frac{-9}{2}\)

Vậy phương trình trên có nghiệm là \(\frac{-9}{2}\)

b) \(\frac{x+3}{x-2}=\frac{5}{\left(x-2\right)\left(3-x\right)}\text{⇔}\frac{x+3}{5}=\frac{x-2}{\left(x-2\right)\left(3-x\right)}\text{⇔}\frac{x+3}{5}=\frac{1}{3-x}\) (ĐKXĐ: x ≠ 2, x ≠ 3)

⇔ (x + 3)(x - 3) = -5 ⇔ x2 - 9 = -5 ⇔ x2 = 4 ⇔ x = \(\pm\)2

Vậy phương trình có tập nghiêm S=\(\left\{\pm2\right\}\)

21 tháng 5 2021

a, \(\frac{x-9}{x}-\frac{x}{x-9}=0\left(đkxđ:x\ne0;9\right)\)

\(< =>\frac{\left(x-9\right)^2}{x\left(x-9\right)}-\frac{x^2}{x\left(x-9\right)}=0\)

\(< =>x^2-18x+81-x^2=0\)

\(< =>18x=81< =>x=\frac{9}{2}\left(tmđk\right)\)

18 tháng 6 2017

b) \(\frac{x-3}{x-2}+\frac{x+2}{x-4}=-1\)

\(\Rightarrow\frac{\left(x-3\right)\left(x-4\right)}{\left(x-2\right)\left(x-4\right)}+\frac{\left(x-2\right)\left(x-2\right)}{\left(x-2\right)\left(x-4\right)}=-1\)

\(\Rightarrow\frac{\left(x-3\right)\left(x-4\right)+x^2-4}{\left(x-2\right)\left(x-4\right)}=-1\)

\(\Rightarrow\frac{x^2-7x+12+x^2-4}{\left(x-2\right)\left(x-4\right)}=-1\)

\(\Rightarrow\frac{2x^2-7x+8}{\left(x-2\right)\left(x-4\right)}=-1\)

\(\Rightarrow\frac{2x^2-7x+8}{\left(x-2\right)\left(x-4\right)}=-1\)

.................

18 tháng 6 2017

a) \(\frac{2}{x-1}+\frac{2x+3}{x^2+x+1}=\frac{\left(2x-1\right)\left(2x+1\right)}{x^3-1}\)

\(\Rightarrow\frac{2\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{\left(2x+3\right)\left(x-1\right)}{\left(x+1\right)\left(x^2+x+1\right)}=\frac{\left(2x-1\right)\left(2x+1\right)}{x^3-1}\)

\(\Rightarrow\frac{2\left(x^2+x+1\right)+\left(2x+3\right)\left(x-1\right)}{x^3-1}=\frac{\left(2x-1\right)\left(2x+1\right)}{x^3-1}\)

\(\Rightarrow\left(x^3-1\right)\left[2\left(x^2+x+1\right)+\left(2x+3\right)\left(x-1\right)\right]=\left(x^3-1\right)\left(2x-1\right)\left(2x+1\right)\)

\(\Rightarrow2\left(x^2+x+1\right)+\left(2x+3\right)\left(x-1\right)=\left(2x-1\right)\left(2x+1\right)\)

\(\Rightarrow2\left(x^2+x+1\right)+\left(2x+3\right)\left(x-1\right)-\left(2x-1\right)\left(2x+1\right)=0\)

\(\Rightarrow2x^2+2x+2+2x^2-2x+3x-3-\left(4x^2-1\right)=0\)

\(\Rightarrow2x^2+2x+2+2x^2-2x+3x-3-4x^2+1=0\)

\(\Rightarrow3x=0\)

\(\Rightarrow luon-dung-voi-moi-x\)

7 tháng 2 2020

\(ĐKXĐ:x\ne\pm2\)

\(\frac{x-2}{2+x}-\frac{3}{x-2}=\frac{2\left(x-11\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow\frac{\left(x-2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{2x-22}{\left(x-2\right)\left(x+2\right)}\)

\(\Rightarrow x^2-4x+4-3x-6=2x-22\)

\(\Leftrightarrow x^2-7x-2-2x+22=0\)

\(\Leftrightarrow x^2-9x+20=0\)

\(\Leftrightarrow x^2-4x-5x+20=0\)

\(\Leftrightarrow x\left(x-4\right)-5\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=4\end{cases}}\)

29 tháng 3 2020
https://i.imgur.com/7xdUBFm.jpg
29 tháng 3 2020

ĐKXĐ : \(\left\{{}\begin{matrix}x\ne0\\x-2\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ne0\\x\ne2\end{matrix}\right.\)

Ta có : \(\frac{x+2}{x}=\frac{2x+3}{2\left(x-2\right)}\)

=> \(x\left(2x+3\right)=2\left(x-2\right)\left(x+2\right)\)

=> \(2x^2+3x=2x^2-8\)

=> \(x=-\frac{8}{3}\) ( TM )

Vậy phương trình trên có tập nghiệm là \(S=\left\{-\frac{8}{3}\right\}\)

11 tháng 4 2020

a) \(\frac{x}{x+1}-\frac{2x-3}{x-1}=\frac{2x+3}{x^2-1}\) \(\left(ĐKXĐ:x\ne\pm1\right)\)

\(\Leftrightarrow x\left(x-1\right)-\left(2x-3\right)\left(x+1\right)=2x+3\)

\(\Leftrightarrow x^2-x-2x^2-2x+3x+3=2x+3\)

\(\Leftrightarrow-x^2-2x=0\Leftrightarrow-x\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

11 tháng 4 2020

b) \(\frac{x-1}{x}-\frac{x-2}{x+1}=2\) \(\left(ĐKXĐ:x\ne0;x\ne-1\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)-x\left(x-2\right)=2x\left(x+1\right)\)

\(\Leftrightarrow x^2-1-x^2+2x=2x^2+2x\)

\(\Leftrightarrow2x^2=-1\left(\text{vô lí}\right)\)

Vậy phương trình vô nghiệm.

1) Giải bài toán bằng cách lập ptrình: ( Nếu các đại lượng có sự biến đổi thì lập bảng 12 ô ) Một miếng đất hcn có chiều dài hơn chiều rộng 6m. Tính kích thước của miếng đất, biết chu vi của nó là 60m. 2) Giải các pt chứa ẩn ở mẫu ( Hãy tìm điều kiện cho ẩn để mẫu thức khác 0) a) \(\frac{x}{2\left(x-3\right)}+\frac{x}{2x+2}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\) b)...
Đọc tiếp

1) Giải bài toán bằng cách lập ptrình: ( Nếu các đại lượng có sự biến đổi thì lập bảng 12 ô )

Một miếng đất hcn có chiều dài hơn chiều rộng 6m. Tính kích thước của miếng đất, biết chu vi của nó là 60m.

2) Giải các pt chứa ẩn ở mẫu ( Hãy tìm điều kiện cho ẩn để mẫu thức khác 0)

a) \(\frac{x}{2\left(x-3\right)}+\frac{x}{2x+2}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)

b) \(\frac{\left(x^2+2x\right)-\left(3x+6\right)}{x-3}=0\)

c) \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)

d) \(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{\left(x+3\right)\left(x-3\right)}\)

e) \(\frac{3}{\left(x-1\right)\left(x-2\right)}+\frac{2}{\left(x-3\right)\left(x-1\right)}=\frac{1}{\left(x-2\right)\left(x-3\right)}\)

f) \(\frac{x}{3x-2}-\frac{4}{4x-3}=\frac{x^2}{\left(3x-2\right)\left(4x-3\right)}\)

g) \(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)

h) \(\frac{2x-1}{x-3}-\frac{1}{x}=\frac{3}{x^2-3x}\)

i) \(\frac{x-1}{x+2}-\frac{x}{x-2}=\frac{5x-2}{4-x^2}\)

1
9 tháng 2 2020

Câu 1 :

- Gọi chiều dài miếng đất là x ( m, x > 6 )

=> Chiều rộng miếng đất là : x - 6 ( m )

=> Chu vi miếng đất đó là : \(2\left(x+x-6\right)\) ( m )

Theo đề bài chu vi mảnh đất đó là 60m nên ta có phương trình :

\(2\left(x+x-6\right)=60\)

=> \(2x-6=30\)

=> \(2x=24\)

=> \(x=12\) ( TM )

Mà diện tích mảnh đất là : \(x\left(x-6\right)\)

=> Smảnh đất = \(12\left(12-6\right)=12.6=72\left(m^2\right)\)

12 tháng 2 2020

bạn ơi, cái pt 2x - 6= 30 ra 18 mới đúng.

PHƯƠNG TRÌNH CHỨA ẨN Ở MẪU Dạng 1. TÌM ĐIỀU KIỆN XÁC ĐỊNH CỦA MỘT PHƯƠNG TRÌNH. Bài 1. Tìm điều kiện xác định của các phương trình: a) \(\frac{7x}{x+4}-\frac{x-3}{x-1}=\frac{x-5}{8}\) b) \(\frac{x+6}{5\left(x-2\right)}-\frac{x-1}{3\left(x+2\right)}=\frac{4}{x^2-4}\) Dạng 2. GIẢI PHƯƠNG TRÌNH CHỨA ẨN Ở MẪU Bài 2. Giải phương trình sau: a) \(\frac{4x-3}{x-5}=\frac{29}{3}\) b) \(\frac{2x-1}{5-3x}=2\) c)...
Đọc tiếp

PHƯƠNG TRÌNH CHỨA ẨN Ở MẪU

Dạng 1. TÌM ĐIỀU KIỆN XÁC ĐỊNH CỦA MỘT PHƯƠNG TRÌNH.

Bài 1. Tìm điều kiện xác định của các phương trình:

a) \(\frac{7x}{x+4}-\frac{x-3}{x-1}=\frac{x-5}{8}\) b) \(\frac{x+6}{5\left(x-2\right)}-\frac{x-1}{3\left(x+2\right)}=\frac{4}{x^2-4}\)

Dạng 2. GIẢI PHƯƠNG TRÌNH CHỨA ẨN Ở MẪU

Bài 2. Giải phương trình sau:

a) \(\frac{4x-3}{x-5}=\frac{29}{3}\)

b) \(\frac{2x-1}{5-3x}=2\)

c) \(\frac{7}{x+2}=\frac{3}{x-5}\)

Bài 3. Giải phương trình sau:

a) \(\frac{x+5}{3\left(x-1\right)}+1=\frac{3x+7}{5\left(x-1\right)}\)

b) \(\frac{x-3}{x-5}+\frac{1}{x}=\frac{x+5}{x\left(x-5\right)}\)

c) \(\frac{11}{x}=\frac{9}{x+1}+\frac{2}{x-4}\)

Dạng 3. TÌM GIÁ TRỊ CỦA BIẾN ĐỂ GIÁ TRỊ CỦA HAI BIỂU THỨC CÓ MỐI LIÊN QUAN NÀO ĐÓ.

Bài 4. Cho hai biểu thức \(A=\frac{3}{3x+1}+\frac{2}{1-3x}\); \(B=\frac{x-5}{9x^2-1}\)với giá trị nào của x thì hai biểu thức A và B có cùng một giá trị ?

Dạng 4:PHƯƠNG TRÌNH CHỨA ẨN Ở MẪU CHỨA THAM SỐ

Bài 5. Cho phương trình (ẩn x): \(\frac{x+k}{k-x}-\frac{x-k}{k+x}=\frac{k\left(3k+1\right)}{k^2-x^2}\)

a) Giải phương trình với \(k=1\)

b) Giải phương trình với \(k=0\)

c) Tìm các giá trị của k sao cho phương trình nhận \(x=\frac{1}{2}\)làm nghiệm.

0
14 tháng 4 2020

Bài 3 tương tự