Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
Ta có \(\left(\frac{-1}{4}x^3y^4\right)\left(\frac{-4}{5}x^4y^3\right)\left(\frac{1}{2}xy\right)\)= \(\frac{1}{10}x^8y^8\ge0\)
Vậy ba đơn thức \(\frac{-1}{4}x^3y^4;\frac{-4}{5}x^4y^3;\frac{1}{2}xy\)không thể cùng có gt âm (đpcm)
Câu a,câu d mk làm rồi nhé
b, Ta có : \(\frac{x}{5}=\frac{y}{3}\)=> \(\frac{x^2}{25}=\frac{y^2}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2-y^2}{25-9}=\frac{4}{16}=\frac{1}{4}\)
=> \(\hept{\begin{cases}\frac{x^2}{25}=\frac{1}{4}\\\frac{y^2}{9}=\frac{1}{4}\end{cases}}\)=> \(\hept{\begin{cases}x^2=\frac{25}{4}\\y^2=\frac{9}{4}\end{cases}}\)=> \(\hept{\begin{cases}x=\pm\frac{5}{2}\\y=\pm\frac{3}{2}\end{cases}}\)
c, Đặt : \(\frac{x}{2}=\frac{y}{3}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\end{cases}}\)
=> x.y = 2k.3k = 6k2
=> 6k2 = 54
=> k2 = 9
=> k = \(\pm3\)
Như vậy ta tìm được x = 6 , y = 9 hay x = -6 , y = -9
a) Từ \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\left(1\right)\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{124}{62}=2\)
\(\Rightarrow x=15.2=30;\)
\(y=20.2=40;\)
\(z=28.2=56\)
Vậy x = 30; y = 40 ; z = 56
b) Đặt \(\frac{x}{5}=\frac{y}{3}=k\)
\(\Rightarrow x=5k;y=3k\)
Khi đó \(x^2-y^2=4\)
\(\Leftrightarrow\left(5k\right)^2-\left(3k\right)^2=4\)
\(\Rightarrow5^2.k^2-3^2.k^2=4\)
\(\Rightarrow25.k^2-9.k^2=4\)
\(\Rightarrow k^2.\left(25-9\right)=4\)
\(\Rightarrow k^2.16=4\)
\(\Rightarrow k^2.4^2=2^2\)
\(\Rightarrow k^2=\left(\frac{1}{2}\right)^2\)
\(\Rightarrow k=\pm\frac{1}{2}\)
Nếu \(k=\frac{1}{2}\Rightarrow x=5.\frac{1}{2}=\frac{5}{2};y=3.\frac{1}{2}=\frac{3}{2}\)
Nếu \(k=-\frac{1}{2}\Rightarrow x=-\frac{1}{2}.5=-\frac{5}{2};y=-\frac{1}{2}.3=-\frac{3}{2}\)
Vậy các cặp (x;y) thỏa mãn là : \(\left(\frac{5}{2};\frac{3}{2}\right);\left(-\frac{5}{2};-\frac{3}{2}\right)\)
c) Đặt \(\frac{x}{2}=\frac{y}{3}=k\)
\(\Rightarrow x=2k;y=3k\)
Khi đó xy = 54
<=> 2k.3k = 54
=> 6.k2 = 54
=> k2 = 9
=> k2 = 32
=> \(k=\pm3\)
Nếu k = 3 => x = 2.3 = 6 ; y = 3.3 = 9
Nếu k = - 3 => x = 2.(-3) = 6 ; y 3.(-3) = 9
Vậy các cặp số (x;y) thỏa mãn là : (6;9) ; (-6;-9)
Bài giải
a, Đặt \(\frac{x}{2}=\frac{y}{5}=k\text{ }\Rightarrow\text{ }\hept{\begin{cases}x=2k\\y=5k\end{cases}}\text{ }\Rightarrow\text{ }x\cdot y=2k\cdot5k=10k^2=90\text{ }\Rightarrow\text{ }k^2=9\text{ }\Rightarrow\text{ }k=\pm3\)
\(\Rightarrow\text{ }\hept{\begin{cases}x=2\cdot\left(-3\right)=-6\\y=5\cdot\left(-3\right)=-15\end{cases}}\) hoặc \(\hept{\begin{cases}x=2\cdot3=6\\y=5\cdot3=15\end{cases}}\)
Vậy \(\left(x\text{ ; }y\right)=\left(-3\text{ ; }-15\right)\text{ ; }\left(6\text{ ; }15\right)\)
b, Do \(\hept{\begin{cases}\left(x-\frac{1}{5}\right)^{2004}\ge0\\\left(y+0,4\right)^{100}\ge0\\\left(z-3\right)^{678}\ge0\end{cases}}\text{ mà }\left(x-\frac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-\frac{1}{5}\right)^{2004}\ge0\\\left(y+0,4\right)^{100}\ge0\\\left(z-3\right)^{678}\ge0\end{cases}}\Rightarrow\hept{\begin{cases}\left(x-\frac{1}{5}\right)^{2004}=0\\\left(y+0,4\right)^{100}=0\\\left(z-3\right)^{678}=0\end{cases}}\Rightarrow\hept{\begin{cases}x-\frac{1}{5}=0\\y+0,4=0\\z-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{5}\\y=-0,4\\z=3\end{cases}}\)
Vậy \(x=\frac{1}{5}\text{ , }y=-0,4\text{ , }z=3\)
a) ĐẶt \(\frac{x}{2}=\frac{y}{5}=k\)suy ra x=2k, y=5k
Mà x.y=90
suy ra 2k. 5k = 90 suy ra k2=9 suy ra k\(\in\){3;-3}
Với k=3 suy ra x=6, y=15
Với k = -3 suy ra x=-1; y=-15
b) Vì \(\left(x-\frac{1}{5}\right)^{2004}\ge0,\forall x\)
\(\left(y+0,4\right)^{100}\ge0,\forall y\)
\(\left(z-3\right)^{678}\ge0,\forall z\)
Suy ra \(\left(x-\frac{1}{5}\right)^{2004}\)+\(\left(y+0,4\right)^{100}\)+\(\left(z-3\right)^{678}\ge0;\forall x,y,z\)
suy ra \(\left(x-\frac{1}{5}\right)^{2004}=0\)và \(\left(y+0,4\right)^{100}=0\)và \(\left(z-3\right)^{678}=0\)
suy ra x=\(\frac{1}{5}\); y=-0,4 ; z=3
x/2=y/5 =>x=2/5y
x.y=90 =>y.2/5y=90=>y2=225=>y=15
=>x=90:15
=>x=6
Vậy x=6,y=15
Ta có : \(\frac{x}{2}=\frac{y}{5}\Leftrightarrow2y=5x\Rightarrow y=\frac{2y}{5}\)
Thay \(y=\frac{2y}{5}\)vào biểu thức \(xy=90\); ta được :
\(\frac{2y}{5}\cdot y=90\Leftrightarrow2y^2=90.5\Leftrightarrow2y^2=450\Leftrightarrow y^2=225\Leftrightarrow y=15\)
Vì \(y=15\Rightarrow x=\frac{2.15}{5}=6\)
Vậy \(x;y=\left[6;15\right]\)
a, \(\frac{x}{5}=\frac{y}{7}\)và x - y = -200
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{7}=\frac{x-y}{5-7}=\frac{-200}{-2}=100\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=100\\\frac{y}{7}=100\end{cases}\Rightarrow\hept{\begin{cases}x=500\\y=700\end{cases}}}\)
Vậy \(\hept{\begin{cases}x=500\\y=700\end{cases}}\)
b, \(\frac{x}{4}=\frac{y}{5}\)và x.y = 20
\(\frac{x}{4}=\frac{y}{5}\)
\(\Leftrightarrow\frac{x^2}{16}=\frac{xy}{20}=\frac{y^2}{25}\)
\(\Leftrightarrow\frac{x^2}{16}=\frac{y^2}{25}=\frac{20}{20}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{x^2}{16}=1\\\frac{y^2}{25}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=16\\y^2=25\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm4\\y=\pm5\end{cases}}\)
Vậy \(\left(x,y\right)\in\left\{\left(-4,-5\right);\left(4,5\right)\right\}\)
c, \(\frac{x}{2}=\frac{y}{3}\)và 4x - 3y = -2
\(\frac{x}{2}=\frac{y}{3}\)
\(\Leftrightarrow\frac{4x}{8}=\frac{3y}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{4x}{8}=\frac{3y}{9}=\frac{4x-3y}{8-9}=\frac{-2}{-1}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{4x}{8}=2\\\frac{3y}{9}=2\end{cases}}\Leftrightarrow\hept{\begin{cases}4x=16\\3y=18\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=6\end{cases}}\)
Vậy \(\hept{\begin{cases}x=4\\y=6\end{cases}}\)
a) x = 6 ; y = 15.
x = -6 ; y = -15.
b) x = 2 ; y = 2.
x = -2 ; y = -2.
Ta có : \(\frac{x}{3}=\frac{y}{5}\Rightarrow5x=3y\Rightarrow x=\frac{3y}{5}\)
Thay \(x=\frac{3y}{5}\)vào biểu thức ta được : \(\left(\frac{3y}{5}\right)^2-y^2=8\)
\(\Leftrightarrow\frac{9y^2}{25}-y^2=8\Leftrightarrow9y^2-25y^2=8.25\Leftrightarrow-16y^2=200\Leftrightarrow y^2=-\frac{25}{5}\left(\text{vô lý}\right)\)
b) \(\frac{x}{2}=\frac{y}{5}\Leftrightarrow5x=2y\Leftrightarrow x=\frac{2y}{5}\)
Thay \(x=\frac{2y}{5}\)vào biểu thức ; ta có : \(\frac{2y}{5}\cdot y=90\Leftrightarrow2y^2=450\Leftrightarrow y^2=225\Leftrightarrow y=15\)
Với \(y=15\Rightarrow x=\frac{2.15}{5}=6\)
Vậy .....
\(\frac{x}{2}=\frac{y}{5}\)và \(xy=90\)
đặt \(\frac{x}{2}=\frac{y}{5}=k\)
\(\Rightarrow x=2k;y=5k\)
ta có : \(xy=2k\cdot5k=10k^2=90\)
\(\Rightarrow k^2=90:10=9\)
\(\Rightarrow\orbr{\begin{cases}k=3\\k=-3\end{cases}}\)
TH1: \(\hept{\begin{cases}x=3\cdot2=6\\y=3\cdot5=15\end{cases}}\)
TH2: \(\hept{\begin{cases}x=-3\cdot2=-6\\y=-3\cdot5=-15\end{cases}}\)
đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\)
=> x.y = 2k.5k = 10k2 = 90
k2 = 90:10
k2 = 9
k2 = 32 <=> k = 3
Thay k vào ta được \(\hept{\begin{cases}x=2k=2.3=6\\y=5k=5.3=15\end{cases}}\)
Vậy x=6 và y=15
Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k;y=5k\)
\(\Rightarrow x.y=2k.5k=10k^2\)
\(\Rightarrow k^2=90:10=9\)
\(\Rightarrow k=\pm3\)
Nếu k = 3 thì x = 6; y = 15
Nếu k = -3 thì x = -6; y = -15