Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nói tóm lại là:
@Nguyễn Ngọc Sáng làm sai
@Tuấn Anh Phan Nguyễn trình bày vậy k đc
Ta có: \(\frac{x}{2}=\frac{y}{5}\) và x . y = 90
Đặt \(\frac{x}{2}=\frac{y}{5}=k\) => x = 2k , y = 5k
Từ x . y = 90 => 2k . 5k = 90 => 10k2 = 90 => k2 = 9 => k = \(\pm3\)
* Với k = 3 thì a = 6 ; y = 15
* Với k = - 3 thì a = - 6 ; y = - 15
Vậy a = 6 ; y = 15 hoặc a = - 6 ; y = - 15
x/2=y/5 =>x=2/5y
x.y=90 =>y.2/5y=90=>y2=225=>y=15
=>x=90:15
=>x=6
Vậy x=6,y=15
Ta có : \(\frac{x}{2}=\frac{y}{5}\Leftrightarrow2y=5x\Rightarrow y=\frac{2y}{5}\)
Thay \(y=\frac{2y}{5}\)vào biểu thức \(xy=90\); ta được :
\(\frac{2y}{5}\cdot y=90\Leftrightarrow2y^2=90.5\Leftrightarrow2y^2=450\Leftrightarrow y^2=225\Leftrightarrow y=15\)
Vì \(y=15\Rightarrow x=\frac{2.15}{5}=6\)
Vậy \(x;y=\left[6;15\right]\)
Đặt x/2 là k ; y/5 là k
Ta có x=2.k ; y =5.k
Suy ra x.y =2k.5k
90 = 10. k bình phương
90 : 10 = k bình phương
9 = k bình phương
Ta có 3 và -3 bình phương sẽ bằng 9
Rồi tới đây bạn tự làm nhé xét hai trường hợp vớ k là 3 và -3 nha
Mik trả lời đầu đó
Nhớ cho mik nha
Giải
Gọi \(\frac{x}{2}\)= \(\frac{y}{5}\)= a
Ta có: +\(\frac{x}{2}\)= a
=> x = 2a
+ \(\frac{y}{5}\)= a
=> y = 5a
Ta có: xy = 90
=> 2a.5a= 90
= 10a2= 90
=> a2=90:10=9
=> a = \(\sqrt{9}\) hoặc -\(\sqrt{9}\)
a = 3 hoặc -3
TH1: a = 3
=> + x=2a=2.3=6
=> + y=5a=2.5=15
TH2: a = -3
=> + x=2a=2(-3)=-6
=> + y=5a=2(-5)=-15
Vậy TH1: a=6:b=15
TH2: a=-6:b=-15
a) x = 6 ; y = 15.
x = -6 ; y = -15.
b) x = 2 ; y = 2.
x = -2 ; y = -2.
Ta có : \(\frac{x}{3}=\frac{y}{5}\Rightarrow5x=3y\Rightarrow x=\frac{3y}{5}\)
Thay \(x=\frac{3y}{5}\)vào biểu thức ta được : \(\left(\frac{3y}{5}\right)^2-y^2=8\)
\(\Leftrightarrow\frac{9y^2}{25}-y^2=8\Leftrightarrow9y^2-25y^2=8.25\Leftrightarrow-16y^2=200\Leftrightarrow y^2=-\frac{25}{5}\left(\text{vô lý}\right)\)
b) \(\frac{x}{2}=\frac{y}{5}\Leftrightarrow5x=2y\Leftrightarrow x=\frac{2y}{5}\)
Thay \(x=\frac{2y}{5}\)vào biểu thức ; ta có : \(\frac{2y}{5}\cdot y=90\Leftrightarrow2y^2=450\Leftrightarrow y^2=225\Leftrightarrow y=15\)
Với \(y=15\Rightarrow x=\frac{2.15}{5}=6\)
Vậy .....
\(\frac{x}{2}=\frac{y}{5}\)và \(xy=90\)
đặt \(\frac{x}{2}=\frac{y}{5}=k\)
\(\Rightarrow x=2k;y=5k\)
ta có : \(xy=2k\cdot5k=10k^2=90\)
\(\Rightarrow k^2=90:10=9\)
\(\Rightarrow\orbr{\begin{cases}k=3\\k=-3\end{cases}}\)
TH1: \(\hept{\begin{cases}x=3\cdot2=6\\y=3\cdot5=15\end{cases}}\)
TH2: \(\hept{\begin{cases}x=-3\cdot2=-6\\y=-3\cdot5=-15\end{cases}}\)
đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\)
=> x.y = 2k.5k = 10k2 = 90
k2 = 90:10
k2 = 9
k2 = 32 <=> k = 3
Thay k vào ta được \(\hept{\begin{cases}x=2k=2.3=6\\y=5k=5.3=15\end{cases}}\)
Vậy x=6 và y=15
Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k;y=5k\)
\(\Rightarrow x.y=2k.5k=10k^2\)
\(\Rightarrow k^2=90:10=9\)
\(\Rightarrow k=\pm3\)
Nếu k = 3 thì x = 6; y = 15
Nếu k = -3 thì x = -6; y = -15
\(\frac{x}{2}=\frac{y}{5}\Rightarrow x=2k\); \(y=5k\)
Ta có : \(2k.5k=90\Rightarrow10k^2=90\Rightarrow k^2=9\Rightarrow\orbr{\begin{cases}k=3\\k=-3\end{cases}}\)
Với \(k=3\Rightarrow x=2.3=6\); \(y=5.3=15\)
Với \(k=-3\Rightarrow x=2.-3=-6\); \(y=5.-3=-15\)
Vậy ....
Đặt :
\(\frac{x}{2}=\frac{y}{5}=k\Leftrightarrow x=2k;y=5k\)
Thay \(x=2k;y=5k\) vào \(x.y=90\) Ta có :
\(2k.5k=90\)
\(\Leftrightarrow10.k^2=90\)
\(\Leftrightarrow k^2=9\)
\(\Leftrightarrow k=3\)
+) \(k=3\Leftrightarrow\hept{\begin{cases}x=2k=2.3=6\\y=5k=5.3=15\end{cases}}\)
Vậy .................
a)\(\left|x-2y\right|=5\Rightarrow\left[\begin{matrix}x-2y=5\\x-2y=-5\end{matrix}\right.\)
Từ \(2x=3y=5z\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)\(\Rightarrow\frac{x}{15}=\frac{2y}{20}=\frac{z}{6}\)
Nếu x-2y=5
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{2y}{20}=\frac{z}{6}=\frac{x-2y}{15-20}=\frac{5}{-5}-1\)
\(\Rightarrow\left\{\begin{matrix}x=-15\\y=-10\\z=-6\end{matrix}\right.\)
Nếu x-2y=-5
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{2y}{20}=\frac{z}{6}=\frac{x-2y}{15-20}=\frac{-5}{-5}=1\)
\(\Rightarrow\left\{\begin{matrix}x=15\\y=10\\z=6\end{matrix}\right.\)
Vậy có 2 bộ (x,y,z). Đó là (-15;-10;-6), (15;10;6)
b) Từ \(5x=2y\Rightarrow\frac{x}{2}=\frac{y}{5}\)\(\Rightarrow\frac{x}{6}=\frac{y}{15}\left(1\right)\)
\(2x=3z\Rightarrow\frac{x}{3}=\frac{z}{2}\)\(\Rightarrow\frac{x}{6}=\frac{z}{4}\left(2\right)\)
Từ (1),(2)\(\Rightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{4}\)
Đặt\(\)\(\frac{x}{6}=\frac{y}{15}=\frac{x}{4}=k\)
\(\Rightarrow\left\{\begin{matrix}x=6k\\y=15k\\z=4k\end{matrix}\right.\Rightarrow xy=90k^2\)
\(\Rightarrow90k^2=90\Rightarrow k^2=1\Rightarrow\left[\begin{matrix}k=1\\k=-1\end{matrix}\right.\)
Với k=1\(\Rightarrow\)\(\left\{\begin{matrix}x=6\\y=15\\z=4\end{matrix}\right.\)
Với k=-1\(\Rightarrow\left\{\begin{matrix}x=-6\\y=-15\\z=-4\end{matrix}\right.\)
Bài 1: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\)
=>\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
=>x=27;z=36;z=60
Bài 2: \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\Rightarrow xy=2k.5k=10k^2=40\Rightarrow k^2=4\Rightarrow\hept{\begin{cases}k=-2\\k=2\end{cases}}\)
+)k=-2 => x=-4;y=-5
+)k=2 => x=4;y=5
Vậy x=-4;y=-5 hoặc x=4;y=5
\(\frac{x}{2}=\frac{y}{5}\Rightarrow x=\frac{2}{5}y\)
\(x.y=90\Rightarrow\frac{2}{5}.y.y=90\Rightarrow y^2=225\Rightarrow y=15\)
\(\Rightarrow x=90:15=6\)
Bn kia còn thíu trường hợp y = -15 nhé!