Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\sqrt{\left(\sqrt{x}+1\right)^2}=2\Leftrightarrow\sqrt{x}+1=2\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}=3\Leftrightarrow\sqrt{x}-2=3\Leftrightarrow\sqrt{x}=5\Leftrightarrow x=25\)
\(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1-2\sqrt{x-1}+1}=\sqrt{\left(\sqrt{x-1}-1\right)^2}=\sqrt{x-1}-1=2\)
\(\Leftrightarrow x=10\)
ĐKXĐ tự tìm\(b,\sqrt{x-4\sqrt{x}+4}=3\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}=3\)
\(\Leftrightarrow\sqrt{x}-2=3\)
\(\Leftrightarrow\sqrt{x}=5\)
\(\Rightarrow x=5^2=25\)
ĐK x >0
\(PT\Leftrightarrow2x+2\sqrt{x^2-\frac{1}{x^4}}=\frac{4}{x^2}.\)
\(\Leftrightarrow2\sqrt{x^2-\frac{1}{x^4}}=\frac{4}{x^2}-2x\)
\(\Leftrightarrow x^2-\frac{1}{x^4}=\frac{4}{x^4}-\frac{4}{x}+x^2\)(chia cả 2 vế cho 2)
\(\Leftrightarrow\frac{5}{x^4}-\frac{4}{x}=0\Leftrightarrow5-4x^3=0\Leftrightarrow4x^3=5\)
\(\Leftrightarrow x^3=\frac{5}{4}\Leftrightarrow x=\sqrt[3]{\frac{5}{4}}\)
Vậy................................
để tui lm cho
áp dụng đẳng thức \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
<=> \(1-3xyz=1\left(1-xy-yz-zx\right)\)
<=> \(3xyz=xy+yz+zx\)
mặt khác ta có 1=(x+y+z)^2=x^2+y^2+z^2+2xy+2yz+2zx
<=> 1=1+2(xy+yz+zx)
<=> xy+yz+zx=0
<=> 3xyz=0
<=> \(\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}}\)
đến đấy cậu tự lm nốt nhé
mà pn tuấn anh j ơi ,, bài này mk tìm đc 3 cặp nghiệm luôn á (x;y;z)=(0;0;1);(0;1;0);(1;0;0)
pn giải cụ thể ra giúp mk vs
Dặt tử = A
A^2 = \(x+\sqrt{x^2-y^2}+x-\sqrt{x^2-y^2}-2\sqrt{x^2-x^2+y^2}\)
= \(2x-2\sqrt{y^2}=2x-2y=2\left(x-y\right)\)
=> A = \(\sqrt{2\left(x-y\right)}\)
Lấy tử chia mẫu là xong
C=\(\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\frac{\sqrt{x}-1}{\left(\sqrt{x}+1\right).\left(\sqrt{x}-1\right)}\right).\frac{\sqrt{x}+1}{\sqrt{x}}\)
C=\(\frac{\left(\sqrt{x}+2\right).\left(x-1\right)-\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2.\left(x-1\right)}.\frac{\sqrt{x}+1}{\sqrt{x}}\)
C=\(\frac{x\sqrt{x}-\sqrt{x}+2x-2-\left(x-1\right)}{\left(\sqrt{x}+1\right)^2.\left(x-1\right)}.\frac{\sqrt{x}+1}{\sqrt{x}}\)
C=\(\frac{x-1+x\sqrt{x}-\sqrt{x}}{\left(\sqrt{x}+1\right)^2.\left(x-1\right)}.\frac{\sqrt{x}+1}{\sqrt{x}}\)
C=\(\frac{\left(x-1\right).\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2.\left(x-1\right)}.\frac{\sqrt{x}+1}{\sqrt{x}}\)
C=\(\frac{1}{\sqrt{x}}=\frac{\sqrt{x}}{x}\)
\(\frac{x}{2}+\frac{3}{2}\sqrt{x^2-4x+4}-2=\frac{x}{2}+\frac{3}{2}\left|x-2\right|-2\)
Với x >= 2 thì \(\frac{x}{2}+\frac{3\left(x-2\right)}{2}=\frac{3x+x-6}{2}=\frac{4x-6}{2}=2x-3\)
Với x < 2 thì \(\frac{x}{2}+\frac{3\left(2-x\right)}{2}=\frac{x+6-3x}{2}=\frac{6-2x}{2}=3-x\)