Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk ko chép lại đề nha:
\(\Rightarrow\)\(\frac{x-2}{2017}\)\(-1+\frac{x-3}{2016}\)\(-1=\frac{x-4}{2015}\)\(-1+\frac{x-5}{2014}\)\(-1\)
\(\Rightarrow\)\(\frac{x-2-2017}{2017}\)\(+\frac{x-3-2016}{2016}\)\(=\frac{x-4-2015}{2015}\)\(+\frac{x-5-2014}{2014}\)
\(\Rightarrow\)\(\frac{x-2019}{2017}\)\(+\frac{x-2019}{2016}\)\(-\frac{x-2019}{2015}\)\(-\frac{x-2019}{2014}\)\(=0\)
\(\Rightarrow\)\(\left(x-2019\right)\)\(\left(\frac{1}{2017}+\frac{1}{2016}-\frac{1}{2015}-\frac{1}{2014}\right)\)\(=0\)
\(\Rightarrow\)\(\orbr{\begin{cases}x-2019=0\\\frac{1}{2017}+\frac{1}{2016}-\frac{1}{2015}-\frac{1}{2014}=0\left(voli\right)\end{cases}}\)
\(\Rightarrow\)\(x-2019=0\)
\(\Rightarrow\)\(x=-2019\)
Chỗ mình nghi voli là vô lí nha
chúc bạn học tốt
a) \(\frac{x+1}{9}+\frac{x+2}{8}=\frac{x+3}{7}+\frac{x+4}{6}\)
\(\Rightarrow\frac{x+1}{9}+1+\frac{x+2}{8}+1=\frac{x+3}{7}+1+\frac{x+4}{6}+1\)
\(\Rightarrow\frac{x+10}{9}+\frac{x+10}{8}=\frac{x+10}{7}+\frac{x+10}{6}\)
\(\Rightarrow\frac{x+10}{9}+\frac{x+10}{8}-\frac{x+10}{7}-\frac{x+10}{6}=0\)
\(\Rightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)
Mà \(\left(\frac{1}{9}< \frac{1}{8}< \frac{1}{7}< \frac{1}{6}\right)\)nên \(\left(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)< 0\)
\(\Rightarrow x+10=0\Rightarrow x=-10\)
Vậy x = -10
b) \(\frac{x}{2012}+\frac{x+1}{2013}+\frac{x+2}{2014}+\frac{x+3}{2015}+\frac{x+4}{2016}=5\)
\(\Rightarrow\frac{x}{2012}-1+\frac{x+1}{2013}-1+\frac{x+2}{2014}-1\)
\(+\frac{x+3}{2015}-1+\frac{x+4}{2016}-1=0\)
\(\Rightarrow\frac{x-2012}{2012}+\frac{x-2012}{2013}+\frac{x-2012}{2014}\)\(+\frac{x-2012}{2015}+\frac{x-2012}{2016}=0\)
\(\Rightarrow\left(x-2012\right)\left(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)=0\)
Mà \(\left(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)>0\)nên x - 2012 = 0
Vậy x = 2012
a, (x+1)/9 +1 + (x+2)/8 = (x+3)/7 + 1 + (x+4)/6 + 1
<=> (x+10)/9 +(x+10)/8 = (x+10)/7 + (x+10)/6
<=> (x+10). (1/9 +1/8 - 1/7 -1/6) =0
vì 1/9 +1/8 -1/7 - 1/6 khác 0
=> x+10=0
=> x=-10
Bài 3 :
\(\frac{x-1}{2016}+\frac{x-2}{2015}=\frac{x-3}{2014}+\frac{x-4}{2013}\)
\(\Leftrightarrow\)\(\left(\frac{x-1}{2016}-1\right)+\left(\frac{x-2}{2015}-1\right)=\left(\frac{x-3}{2014}-1\right)+\left(\frac{x-4}{2013}-1\right)\)
\(\Leftrightarrow\)\(\frac{x-1-2016}{2016}+\frac{x-2-2015}{2015}=\frac{x-3-2014}{2014}+\frac{x-4-2013}{2013}\)
\(\Leftrightarrow\)\(\frac{x-2017}{2016}+\frac{x-2017}{2015}=\frac{x-2017}{2014}+\frac{x-2017}{2013}\)
\(\Leftrightarrow\)\(\frac{x-2017}{2016}+\frac{x-2017}{2015}-\frac{x-2017}{2014}-\frac{x-2017}{2013}=0\)
\(\Leftrightarrow\)\(\left(x-2017\right)\left(\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\right)=0\)
Vì \(\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\ne0\)
Nên \(x-2017=0\)
\(\Rightarrow\)\(x=2017\)
Vậy \(x=2017\)
Chúc bạn học tốt ~
Bài 1 :
\(\left(8x-5\right)\left(x^2+2014\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}8x-5=0\\x^2+2014=0\end{cases}\Leftrightarrow\orbr{\begin{cases}8x=0+5\\x^2=0-2014\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}8x=5\\x^2=-2014\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{8}\\x=\sqrt{-2014}\left(loai\right)\end{cases}}}\)
Vậy \(x=\frac{5}{8}\)
Chúc bạn học tốt ~
Gợi ý :
Bài 1 : Cộng thêm 1 vào 3 phân thức đầu, trừ cho 3 ở phân thức thứ 4, có nhân tử chung là (x+2020)
Bài 2 : Trừ mỗi phân thức cho 1, chuyển vế và có nhân tử chung là (x-2021)
Bài 3 : Phân thức thứ nhất trừ đi 1, phân thức hai trù đi 2, phân thức ba trừ đi 3, phân thức bốn trừ cho 4, phân thức 5 trừ cho 5. Có nhân tử chung là (x-100)
bài 3
\(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15.\)
=>\(\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-15}{17}-5=0\)
=>\(\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)
=>\(\left(x-100\right).\left(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\right)=0\)
=>(x-100)=0 do \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\)
=> x=100
a, \(\frac{x+5}{x-1}=\frac{x+1}{x-3}-\frac{8}{x^2-4x+3}\)
= \(\frac{\left(x+5\right)\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}=\frac{x^2-1}{\left(x-1\right)\left(x-3\right)}-\frac{8}{\left(x-1\right)\left(x-3\right)}\)
( x + 5)(x - 3) = \(x^2-1\) - 8
x\(^2\) -3x + 5x -15 = \(x^2-9\)
= > \(x^2-x^2\) +2x = 15 - 9
=> 2x = 6
=> x = 3
Phải là \(\frac{x}{2012}\)
\(\frac{x}{2012}-1+\frac{x+1}{2013}-1+\frac{x+2}{2014}-1+\frac{x+3}{2015}-1+\frac{x+4}{2016}-1=0\)
\(\Leftrightarrow\left(x-2012\right)\left(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)=0\)
\(\Leftrightarrow x=2012\)
Vậy ...
PT đã cho tương đương với:
\(\left(\frac{x}{2017}+1\right)+\left(\frac{x+1}{2016}+1\right)=\left(\frac{x+2}{2015}+1\right)+\left(\frac{x+3}{2014}+1\right)\)
\(\Leftrightarrow\frac{x+2017}{2017}+\frac{x+2017}{2016}=\frac{x+2017}{2015}+\frac{x+2017}{2014}\)
\(\Leftrightarrow\left(x+2017\right)\left(\frac{1}{2017}+\frac{1}{2016}\right)=\left(x+2017\right)\left(\frac{1}{2015}+\frac{1}{2014}\right)\)
\(\Leftrightarrow x+2017=0\Leftrightarrow x=-2017\)
Theo bài ra , ta có :
\(\frac{x+2}{2014}+\frac{x+1}{2015}=\frac{x+3}{2013}+\frac{x+4}{2012}\)
\(\Leftrightarrow\left(\frac{x+2}{2014}+1\right)+\left(\frac{x+1}{2015}+1\right)=\left(\frac{x+3}{2013}+1\right)+\left(\frac{x+4}{2012}+1\right)\)
\(\Leftrightarrow\left(\frac{x+2+2014}{2014}\right)+\left(\frac{x+1+2015}{2015}\right)=\left(\frac{x+3+2013}{2013}\right)+\left(\frac{x+4+2012}{2012}\right)\)
\(\Leftrightarrow\frac{x+2016}{2014}+\frac{x+2016}{2015}=\frac{x+2016}{2013}+\frac{x+2016}{2012}\)
\(\Leftrightarrow\frac{x+2016}{2014}+\frac{x+2016}{2015}-\frac{x+2016}{2013}-\frac{x+2016}{2012}=0\)
\(\Leftrightarrow\left(x+2016\right)\left(\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2013}-\frac{1}{2012}\right)=0\)
Vì \(\left(\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2013}-\frac{1}{2012}\right)>0\)
\(\Leftrightarrow x+2016=0\)
\(\Leftrightarrow x=-2016\)
Vậy \(x=-2016\)
Tập nghiệm của phương trình là \(S=\left\{-2016\right\}\)
Chúc bạn học tốt =))
\(\frac{x+2}{2014}+\frac{x+1}{2015}=\frac{x+3}{2013}+\frac{x+4}{2012}\)
\(\frac{x+2}{2014}+1+\frac{x+1}{2015}+1=\frac{x+3}{2013}+1+\frac{x+4}{2012}+1\)
\(\frac{x+2+2014}{2014}+\frac{x+1+2015}{2015}=\frac{x+3+2013}{2013}+\frac{x+4+2012}{2012}\)
\(\frac{x+2016}{2014}+\frac{x+2016}{2015}=\frac{x+2016}{2013}+\frac{x+2016}{2012}\)
\(\frac{x+2016}{2014}+\frac{x+2016}{2015}-\frac{x+2016}{2013}-\frac{x+2016}{2012}=0\)
\(\left(x+2016\right).\left(\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2013}-\frac{1}{2012}\right)=0\)
MÀ \(\left(\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2013}-\frac{1}{2012}\right)\ne0\)
\(\Rightarrow x+2016=0\)
\(\Rightarrow x=-2016\)
\(\frac{x}{2016}+\frac{x-1}{2015}+\frac{x-2}{2014}+\frac{x-3}{2013}=4\)
\(\Leftrightarrow\left(\frac{x}{2016}-1\right)+\left(\frac{x-1}{2015}-1\right)+\left(\frac{x-2}{2014}-1\right)+\left(\frac{x-3}{2013}-1\right)=0\)
\(\Leftrightarrow\frac{x-2016}{2016}+\frac{x-2016}{2015}+\frac{x-2016}{2014}+\frac{x-2016}{2013}=0\)
\(\Leftrightarrow\left(x-2016\right)\left(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}+\frac{1}{2013}\right)=0\)
Dễ thấy cái vế sau > 0 nên x=2016
Câu b có cách nào hay hơn bằng cách phá ko ta,hóng quá:)
\(125x^3=\left(2x+1\right)^3+\left(3x-1\right)^3\)
\(\Leftrightarrow8x^3+12x^2+6x+1+27x^3-27x^2+9x-1=125x^3\)
\(\Leftrightarrow35x^3-15x^2+15x=125x^3\)
\(\Leftrightarrow90x^3+15x^2-15x=0\)
\(\Leftrightarrow x\left(90x^2+15x-15\right)=0\)
\(\Leftrightarrow x\left(3x-1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow x=0;x=-\frac{1}{2};x=\frac{1}{3}\)