Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Đầu tiên,ta chứng minh BĐT phụ (mang tên Cô si): \(x+y\ge2\sqrt{xy}\)
Thật vậy,điều cần c/m \(\Leftrightarrow x+y-2\sqrt{xy}\ge0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\) (luôn đúng)
Vậy BĐT phụ (Cô si) là đúng.
----------------------------------------------------------
Áp dụng BĐT Cô si,ta có: \(2\sqrt{x}=2\sqrt{1x}\le x+1\)
Do đó:
\(B=\frac{2\sqrt{x}}{x+1}\le\frac{x+1}{x+1}=1\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\)
Để P max=> x2+2x+2 min
-Có x2+2x+2>=(x+1)2+1
Dấu"=" xảy ra <=> x=-1
=> MaxP=5/1=5 tại x=-1
Bài giải
\(P=\frac{5}{x^2+2x+2}\) đạt GTLN khi \(x^2+2x+2\) đạt GTNN
Do \(x^2+2x+2=\left(x+1\right)^2+1\ge1\) Dấu " = " xảy ra khi ( x + 1 )2 + 1 = 1 => ( x + 1 ) 2 = 0 => x + 1 = 0 => x = - 1
\(\Rightarrow\text{ }P\le\frac{5}{1}=5\)
\(\Rightarrow\text{ }Max\text{ }P=5\text{ khi }x=-1\)
giải câu b trc nha
= ((x-1)^2+2009]/x^2=(x-1)^2/x^2+2009
vậy min=2009 khi x=1
https://olm.vn//hoi-dap/question/57101.html
Tham khảo đây nhá bạn
\(P=\frac{2x-1}{x^2-2}\left(ĐKXĐ:x\ne\pm\sqrt{2}\right)\)
\(\Leftrightarrow Px^2-2P=2x-1\)
\(\Leftrightarrow Px^2-2x-2P+1=0\)
*Nếu P = 0 thì ....
*Nếu P khác 0 thì pt trên là bậc 2
\(\Delta'=1-P\left(2P+1\right)=-2P^2-P+1\)
Có nghiệm thì \(\Delta'\ge0\Leftrightarrow-1\le P\le\frac{1}{2}\)
Nên Pmin = -1
Đến đây dạng này khi biết kết quả thì phân tích dễ r ha , từ làm nốt câu còn lại nhé , tương tự luôn
Ta co : \(A=1-\frac{2}{x}+\frac{2020}{x^2}\)
Dat \(\frac{1}{x}=a\)ta duoc
\(A=2020a^2-2a+1=2020\left(t-\frac{1}{2020}\right)^2+\frac{2019}{2020}\ge\frac{2019}{2020}\)
Dau "=" xay ra \(< =>x=2020\)
Vay min A = 2019/2020 khi x = 2020
Bài này chỉ có giá trị nhỏ nhất thôi bạn ạ!
\(M=\frac{x^2-2x+2020}{x^2}=\frac{2020}{x^2}-\frac{2}{x}+1\)
Đặt \(\frac{1}{x}=t\left(x\ne0\right)\Rightarrow M=2020t^2-2t+1=2020\left(t-\frac{1}{2020}\right)^2+\frac{2019}{2020}\ge\frac{2019}{2020}\)
Đẳng thức xảy ra khi \(t=\frac{1}{2020}\Leftrightarrow x=2020\)
Is that true?
Law Trafargal đăng lên diễn đàn đi bạn, đăng troong bình luận thế này ít được điểm lắm