Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn chuyển về 1 vế sau đó trừ 1 vào mỗi phân thức ta được :
\(\left(x-2005\right)\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}-\frac{1}{2003}-\frac{1}{2004}-\frac{1}{2005}\right)=0\)
Vì biểu thức bên phải khác 0 nên : \(x-2005=0\)=> \(x=2005\)
\(\frac{x-5}{2000}+\frac{x-4}{2001}+\frac{x-3}{2002}=\frac{x-2}{2003}+\frac{x-1}{2004}+\frac{x}{2005}\)
\(\Leftrightarrow\frac{x-2005}{2000}+\frac{x-2005}{2001}+\frac{x-2005}{2002}=\frac{x-2005}{2003}+\frac{x-2005}{2004}+\frac{x-2005}{2005}\)
\(\Leftrightarrow\left(x-2005\right)\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}-\frac{1}{2003}-\frac{1}{2004}-\frac{1}{2005}\right)=0\)
<=> x - 2005 = 0
<=> x = 2005
Vậy ...............
a)\(\frac{x+32}{11}+\frac{x+23}{12}=\frac{x+38}{13}+\frac{x+27}{14}\)
\(\left(\frac{x-1}{11}+3\right)+\left(\frac{x-1}{12}+2\right)=\left(\frac{x-1}{13}+3\right)+\left(\frac{x-1}{14}+2\right)\)
\(\left(\frac{x-1}{11}+\frac{x-1}{12}\right)+\left(3+2\right)=\left(\frac{x-1}{13}+\frac{x-1}{14}\right)+\left(3+2\right)\)
\(\frac{x-1}{11}+\frac{x-1}{12}=\frac{x-1}{13}+\frac{x-1}{14}\)
\(\frac{x-1}{11}+\frac{x-1}{12}-\frac{x-1}{13}+\frac{x-1}{14}=0\)
\(\left(x-1\right)\left(\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)=0\)
Vì \(\frac{1}{11}+\frac{1}{12}\ne\frac{1}{13}+\frac{1}{14}\)\(\Rightarrow\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\ne0\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
\(\Leftrightarrow\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)
\(\Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
\(\Leftrightarrow x+2004=0\)
\(\Leftrightarrow x=-2004\)
$\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}$x+42000 +x+32001 =x+22002 +x+12003
$\Rightarrow\left(\frac{x+4}{2000}+1\right)+\left(\frac{x+3}{2001}+1\right)=\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+1}{2003}+1\right)$⇒(x+42000 +1)+(x+32001 +1)=(x+22002 +1)+(x+12003 +1)
$\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}$⇒x+20042000 +x+20042001 =x+20042002 +x+20042003
$\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0$⇒x+20042000 +x+20042001 −x+20042002 −x+20042003 =0
$\Rightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0$⇒(x+2004)(12000 +12001 −12002 −12003 )=0
$\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\Rightarrow x+2004=0$12000 +12001 −12002 −12003 ≠0⇒x+2004=0
=>x=0-2004
=>x=-2004
vậy x=-2004
Có đúng ko các bạn?
\(a,\frac{x+2}{2010}+\frac{x+2}{2011}+\frac{x+2}{2012}=\frac{x+2}{2013}+\frac{x+2}{2014}\)
\(\Leftrightarrow\frac{x+2}{2010}+\frac{x+2}{2011}+\frac{x+2}{2012}-\frac{x+2}{2013}-\frac{x+2}{2014}=0\)
\(\Leftrightarrow\left(x+2\right)\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\)
\(\text{Mà }\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\ne0\text{ nên:}\)
\(\Leftrightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
\(b,\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(\Leftrightarrow\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)
\(\Leftrightarrow \frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)
\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
\(M\text{à}:\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0 n\text{ê}n:\)
\(x+2004=0\)
\(\Leftrightarrow x=-2004\)
Bạn tham khảo nhé
\(a)\) \(\frac{x-1}{2003}+\frac{x-2}{2002}+\frac{x-3}{2001}-3=0\)
\(\Leftrightarrow\)\(\left(\frac{x-1}{2003}-1\right)+\left(\frac{x-2}{2002}-1\right)+\left(\frac{x-3}{2001}-1\right)+\left(-3+3\right)=0\)
\(\Leftrightarrow\)\(\frac{x-2004}{2003}+\frac{x-2004}{2002}+\frac{x-2004}{2001}=0\)
\(\Leftrightarrow\)\(\left(x-2004\right)\left(\frac{1}{2003}+\frac{1}{2002}+\frac{1}{2001}\right)=0\)
Vì \(\frac{1}{2003}+\frac{1}{2002}+\frac{1}{2001}\ne0\)
\(\Rightarrow\)\(x-2004=0\)
\(\Rightarrow\)\(x=2004\)
Vậy \(x=2004\)
Chúc bạn học tốt ~
\(b)\) \(\frac{315-x}{101}+\frac{313-x}{103}+\frac{311-x}{105}+\frac{309-x}{107}=-4\)
\(\Leftrightarrow\)\(\left(\frac{315-x}{101}+1\right)+\left(\frac{313-x}{103}+1\right)+\left(\frac{311-x}{105}+1\right)+\left(\frac{309-x}{107}+1\right)=-4+4\)
\(\Leftrightarrow\)\(\frac{416-x}{101}+\frac{416-x}{103}+\frac{416-x}{105}+\frac{416-x}{107}=0\)
\(\Leftrightarrow\)\(\left(416-x\right)\left(\frac{1}{101}+\frac{1}{103}+\frac{1}{105}+\frac{1}{107}\right)=0\)
Vì \(\frac{1}{101}+\frac{1}{103}+\frac{1}{105}+\frac{1}{107}\ne0\)
\(\Rightarrow\)\(416-x=0\)
\(\Rightarrow\)\(x=416\)
Vậy \(x=416\)
Chúc bạn học tốt ~
ta có \(\frac{2000+2002}{2001+2003}\)= \(\frac{2000}{2001+2003}\)+ \(\frac{2002}{2001+2003}\)=\(\frac{2000}{4004}\)+\(\frac{2002}{4004}\)
ta có \(\frac{2000}{2001}\)>\(\frac{2000}{4004}\) và \(\frac{2002}{2003}\)> \(\frac{2002}{4004}\)
nên \(\frac{2000}{2001}\)+\(\frac{2002}{2003}\)>\(\frac{2000}{4004}\)+\(\frac{2002}{4004}\)
vậy \(\frac{2000}{2001}\)+\(\frac{2002}{2003}\)>\(\frac{2000+2002}{2001+2003}\)
\(\frac{2000+2002}{2001+2003}=\frac{2000}{2001+2003}+\frac{2002}{2001+2003}< \frac{2000}{2001}+\frac{2002}{2003}\)
\(\frac{x+16}{2000}+1+\frac{x+15}{2001}+1=\frac{x+14}{2002}+1+\frac{x+13}{2003}+1\)
\(\frac{x+2016}{2000}+\frac{x+2016}{2001}=\frac{x+2016}{2002}+\frac{x+2016}{2003}\)
\(\frac{x+2016}{2000}+\frac{x+2016}{2001}-\frac{x+2016}{2002}-\frac{x+2016}{2003}=0\)
\(\left(x+2016\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
\(x-2016=0\)
\(x=2016\)