Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+4}{2007}+\frac{x+8}{2003}=\frac{x+1}{2010}=\frac{x+3}{2008}\)
\(\Leftrightarrow\frac{x+4}{2007}=\frac{x+1}{2010}\)
\(\Leftrightarrow\left(x+4\right)2010=\left(x+1\right)2007\)
\(\Leftrightarrow2010x+8040=2007x+2007\)
\(\Leftrightarrow2010x-2007x=2007-8040\)
\(\Leftrightarrow3x=-6033\)
\(\Leftrightarrow x=-2011\)
\(\frac{x+4}{2007}+\frac{x+8}{2003}=\frac{x+1}{2010}+\frac{x+3}{2008}\)
=>\(\left(\frac{x\text{+4}}{2007}+1\right)+\left(\frac{x+8}{2003}+1\right)=\left(\frac{x+1}{2010}+1\right)+\left(\frac{x+3}{2008}+1\right)\)
=>\(\frac{x+2011}{2007}+\frac{x+2011}{2003}=\frac{x+2011}{2010}+\frac{x+2011}{2008}\)
=>\(\frac{x+2011}{2007}+\frac{x+2011}{2003}-\frac{x+2011}{2010}-\frac{x+2011}{2008}=0\)
=>\(x+2011\left(\frac{1}{2007}+\frac{1}{2003}-\frac{1}{2010}-\frac{1}{2008}\right)=0\)
Mà \(\frac{1}{2007}+\frac{1}{2003}-\frac{1}{2010}-\frac{1}{2008}\ne0\)
=> x+2011=0
=>x=-2011
Vậy x = -2011
Ta có :
\(\frac{x+1}{2012}+\frac{x+2}{2011}+\frac{x+3}{2010}=\frac{x+4}{2009}+\frac{x+5}{2008}+\frac{x+6}{2007}\)
\(\left(\frac{x+1}{2012}+1\right)+\left(\frac{x+2}{2011}+1\right)+\left(\frac{x+3}{2010}+1\right)=\left(\frac{x+4}{2009}+1\right)+\left(\frac{x+5}{2008}+1\right)+\left(\frac{x+6}{2007}+1\right)\)
\(\Leftrightarrow\)\(\frac{x+2013}{2012}+\frac{x+2013}{2011}+\frac{x+2013}{2010}=\frac{x+2013}{2009}+\frac{x+2013}{2008}+\frac{x+2013}{2007}\)
\(\Leftrightarrow\)\(\left(x+2013\right).\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}\right)=\left(x+2013\right).\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}\right)\)
\(\Leftrightarrow\)\(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}=\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}\)\(\left(1\right)\)
Mà \(\frac{1}{2012}< \frac{1}{2009}\)\(;\)\(\frac{1}{2011}< \frac{1}{2008}\)\(;\)\(\frac{1}{2010}< \frac{1}{2007}\)
\(\Rightarrow\)\(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}< \frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}\)\(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)suy ra không có giá trị nào của \(x\)thoả mãn đề bài
Vậy không có gía trị nào của \(x\)hay \(x\in\left\{\varnothing\right\}\)
a) \(\frac{4-3x}{5}-\frac{4-x}{10}=\frac{x+2}{2}\)
\(\frac{8-6x-4+x}{10}=\frac{5x+10}{10}\)
\(4-5x=5x+10\)
\(4-5x-5x-10=0\)
\(-6-10x=0\)
\(\Rightarrow x=\frac{-3}{5}\)
Vậy....
\(\frac{4-3x}{5}-\frac{4-x}{10}=\frac{x+2}{2}\)
\(\Leftrightarrow\)\(\frac{2.\left(4-3x\right)}{10}-\frac{4-x}{10}=\frac{5.\left(x+2\right)}{10}\)
\(\Rightarrow\) 2.( 4 - 3x ) - 4 + x = 5.( x + 2 )
\(\Leftrightarrow\)8 - 6x - 4+ x = 5x + `10
\(\Leftrightarrow\)-6x + x - 5x = -8 + 4 + 10
\(\Leftrightarrow\) -10x = 6
\(\Leftrightarrow\)\(x=\frac{-3}{5}\)
Vậy phương trình có nghiệm là: \(x=\frac{-3}{5}\)
b ) \(\frac{x+1}{2009}+\frac{x+2}{2008}=\frac{x+2007}{3}+\frac{x+2006}{4}\)
\(\Leftrightarrow\) \(\frac{x+1}{2009}+1+\frac{x+2}{2008}+1\)\(=\frac{x+2007}{3}+1+\frac{x+2006}{4}+1\)
\(\Leftrightarrow\)\(\frac{x+1}{2009}+\frac{2009}{2009}+\frac{x+2}{2008}+\frac{2008}{2008}\)\(=\frac{x+2007}{3}+\frac{3}{3}+\frac{x+2006}{4}+\frac{4}{4}\)
\(\Leftrightarrow\)\(\frac{x+2010}{2009}+\frac{x+2010}{2008}=\frac{x+2010}{3}+\frac{x+2006}{4}\)
\(\Leftrightarrow\)\(\frac{x+2010}{2009}+\frac{x+2010}{2008}-\frac{x+2010}{3}-\frac{x+2010}{4}=0\)
\(\Leftrightarrow\)\(\left(x+2010\right).\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{3}-\frac{1}{4}\right)=0\)
\(\Leftrightarrow\)\(x+2010=0\) ( Vì \(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{3}-\frac{1}{4}\ne0\))
\(\Leftrightarrow\) \(x=-2010\)
Vậy phương trình có nghiệm là: x = -2010
\(pt\Leftrightarrow\frac{x}{2009}+\frac{1}{2009}+\frac{x}{2008}+\frac{2}{2008}=\frac{x}{3}+\frac{2007}{3}+\frac{x}{4}+\frac{2006}{4}\Leftrightarrow\frac{x}{2009}+\frac{x}{2008}-\frac{x}{3}-\frac{x}{4}=\frac{2006}{4}+\frac{2007}{3}-\frac{1}{1008}-\frac{1}{2009}\Leftrightarrow x\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{3}-\frac{1}{4}\right)=\frac{2006}{4}+\frac{2007}{3}-\frac{1}{1008}-\frac{1}{2009}\Leftrightarrow x=\frac{\frac{2006}{4}+\frac{2007}{3}-\frac{1}{1008}-\frac{1}{2009}}{\frac{1}{2009}+\frac{1}{2008}-\frac{1}{3}-\frac{1}{4}}=-2010\)
c) Ta có : \(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
\(\Rightarrow\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)=\left(\frac{x+4}{2005}+1\right)+\left(\frac{x+5}{2004}+1\right)+\)\(\left(\frac{x+6}{2003}+1\right)\)
\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}=\frac{x+2009}{2005}+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)
\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x+2009}{2003}=0\)
\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)
Mà : \(\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)\ne0\)
Nên x + 2009 = 0 => x = -2009
a) \(4\left(x-3\right)^2=9\left(2-3x\right)^2\)
\(\Leftrightarrow\left(2x-6\right)^2=\left(6-9x\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-6=6-9x\\2x-6=9x-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}11x=12\\7x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{12}{11}\\x=0\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{12}{11};0\right\}\)
b) \(ĐKXĐ:x\ne\pm1\)
\(\frac{x+1}{x-1}+\frac{x^2+3x-2}{1-x^2}=\frac{x-1}{x+1}\)
\(\Leftrightarrow\frac{x+1}{x-1}-\frac{x^2+3x-2}{x^2-1}-\frac{x-1}{x+1}=0\)
\(\Leftrightarrow\frac{\left(x+1\right)^2-x^2-3x+2-\left(x-1\right)^2}{x^2-1}=0\)
\(\Leftrightarrow\frac{x^2+2x+1-x^2-3x+2-x^2+2x-1}{x^2-1}=0\)
\(\Leftrightarrow-x^2+x+2=0\)
\(\Leftrightarrow x^2-x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=-1\left(ktm\right)\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là \(S=\left\{2\right\}\)
a ) \(4\left(x+5\right)-3\left|2x-1\right|=0\)
\(\Leftrightarrow3\left|2x-1\right|=4\left(x+5\right)\)
\(\Leftrightarrow\left|2x-1\right|=\frac{4}{3}\left(x+5\right)\left(ĐK:x\ge-5\right)\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=\frac{4}{3}\left(x+5\right)\\2x-1=-\frac{4}{3}\left(x+5\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=\frac{4}{3}x+\frac{20}{3}\\2x-1=-\frac{4}{3}x-\frac{20}{3}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{2}{3}x=-\frac{23}{3}\\\frac{2}{3}x=-\frac{17}{3}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{23}{2}\left(l\right)\\x=-\frac{17}{10}\left(n\right)\end{cases}}\)
Vậy \(x=-\frac{17}{10}\)
b ) \(\frac{2-x}{2007}-1=\frac{1-x}{2008}-\frac{x}{2009}\)
\(\Leftrightarrow\frac{2-x}{2007}+1=\left(\frac{1-x}{2008}+1\right)+\left(1-\frac{x}{2009}\right)\)
\(\Leftrightarrow\frac{2009-x}{2007}=\frac{2009-x}{2008}=\frac{2009-x}{2009}\)
\(\Leftrightarrow\left(2009-x\right)\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)=0\)
\(\Leftrightarrow2009-x=0\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\ne0\right)\)
\(\Leftrightarrow x=2019\)
Vậy phương trình có nghiệm \(x=2019\)
c ) \(x^4+4x^2-5=0\)
\(\Leftrightarrow x^4-x^2+5x^2-5=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)+5\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2+5\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2+5\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+5=0\left(l\right)\\x=1\end{cases}}\)
\(x=-1\)
Vậy \(x=1\) hoặc \(x=-1\)
Chúc bạn học tốt !!!
\(b,\)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
\(\Rightarrow\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)=\left(\frac{x+4}{2005}+1\right)+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)
\(\Rightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}=\frac{x+2009}{2005}+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)
\(\Rightarrow\left(x+9\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}\right)=\left(x+9\right)\left(\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\right)\)
\(\Rightarrow\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}=\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\left(KTM\right)\)
\(\text{Giải}\)
\(b,\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)
\(\Leftrightarrow x+2009=0\Leftrightarrow x=-2009\)
bên sau là 2 lần -4 à đúng ko đấy ???
\(\frac{x+1}{2010}+\frac{x+3}{2008}+\frac{x+4}{2007}+\frac{x+9}{2002}=-4\)
\(\Leftrightarrow\frac{x+1}{2010}+1+\frac{x+3}{2008}+1+\frac{x+4}{2007}+1+\frac{x+9}{2002}+1=-4+4\)
\(\Leftrightarrow\frac{x+2011}{2010}+\frac{x+2011}{2008}+\frac{x+2011}{2007}+\frac{x+2011}{2002}=0\)
\(\Leftrightarrow\left(x+2011\right)\left(\frac{1}{2010}+\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2002}\right)=0\)
\(\Leftrightarrow x+2011=0\)
\(\Leftrightarrow x=-2011\)