Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-1}{2}\)= \(\frac{2y-4}{6}\)=\(\frac{3z-9}{12}\)=\(\frac{x-1-2y+4+3z-9}{2-6+12}\)= \(\frac{14-1+4-9}{8}\)= 1
=> x =2+1=3
y= (6+4) : 2=5
z=(12+9) : 3=7
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
Do đó :
\(\frac{y+z-x}{x}=1\)\(\Rightarrow\)\(2x=y+z\)
\(\frac{z+x-y}{y}=1\)\(\Rightarrow\)\(2y=x+z\)
\(\frac{x+y-z}{z}=1\)\(\Rightarrow\)\(2z=x+y\)
Suy ra :
\(P=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{x}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{8xyz}{xyz}=8\)
Vậy \(P=8\)
Đề hơi sai
a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{-4}=\frac{x-y-z}{2-3+4}=\frac{27}{3}=9\)
=> \(\hept{\begin{cases}\frac{x}{2}=9\\\frac{y}{4}=9\\\frac{z}{-4}=9\end{cases}}\) => \(\hept{\begin{cases}x=9.2=18\\y=9.3=27\\z=9.\left(-4\right)=-36\end{cases}}\)
Vậy ...
a, ÁP DỤNG DÃY TỈ SỐ BĂNG NHAU TA CÓ
\(\frac{x}{2}=\frac{y}{3}=\frac{x}{-4}=\frac{x-y-z}{2-3+4}=\frac{27}{3}=9\)
\(\Rightarrow\hept{\begin{cases}x=9.2=18\\y=9.3=27\\z=9.\left(-4\right)=-36\end{cases}}\)
\(\frac{\left(x+1\right)3}{111\cdot3}=\frac{3x+3}{333}\)
\(\frac{\left(y+2\right)2}{222\cdot2}=\frac{2y+4}{444}\)
Ta có: \(\frac{3x+3}{333}=\frac{2y+4}{444}=\frac{z+3}{333}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{3x+3}{333}=\frac{2y+4}{444}=\frac{z+3}{333}=\frac{3x+3+2y+4+z+3}{333+444+333}=\frac{\left(3x+2y+z\right)+\left(3+4+3\right)}{1110}=\frac{989+10}{1110}=\frac{999}{1110}=\frac{9}{10}\)
\(\frac{3x+3}{333}=\frac{9}{10}\Rightarrow3x+3=\frac{2997}{10}\Rightarrow3x=\frac{2967}{10}\Rightarrow x=\frac{989}{10}=98,9\)
Tìm y và z tương tự nhé! Ko hiểu chỗ nào thì nói tớ!
thanks:)